Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:P=(/x-3/+2)^2+(y+3)+2017
Ta thấy:/x-3/\(\ge\)0
\(\Rightarrow\)/x-3/+2\(\ge\)2
\(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4
y\(\ge\)0
\(\Rightarrow\)y+3\(\ge\)3
Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017
=2024
Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0
\(\Rightarrow\)x-3=0
x =0+3
x =3
+, y+3=0
y =0-3
y =-3
\(A=\left|x+\frac{3}{2}\right|\)
Vì \(\left|x+\frac{3}{2}\right|\ge0\)
Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)
a,Vì (x-2)^2>=0 với mọi giá trị của x thuộc R
nên GTNN của (x-2)^2 là 0 khi x=2
b,Vì (2x-1)^2>=0 với mọi giá trị của x thuộc R
Nên (2x-1)^2+1>=1
GTNN của (2x-1)^2+1 là 1 khi 2x-1=0 hay x=1/2
c,GTNN của (2x+1)^4-3 là -3 khi x=-1/2
Bạn trình bày như các câu trên nha
d, (x^2-9)^4 >=0
/y-4/>=0
suy ra (x^2-9)^4+/y-4/-1>=1
GTNN của (x^2-9)^4+/y-4/-1 là -1 khi x^2-9=0 và y-4=0
Hay x=+-3 và y=4
xin lỗi bạn mình biết làm nhưng mình lười
thôi vậy mình cho gợi ý nè
/x/+/y/>hoặc=/x+y/
dấu bằng xảy ra khi x*y>0