K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Áp dụng \(|a|\ge0\)với \(\forall a\)Dấu "=" xảy ra khi \(a\ge0\)

Ta có: \(|x-2013|+|x-2015|=|x-2013|+|2015-x|\ge x-2013+2015-x=2với\forall x\)

Dâu "=" xảy ra khi \(x-2013\ge0\)\(2015-x\ge0\)\(\Leftrightarrow\)\(2013\le x\le2015\)

Lại có: \(|x-2014|\ge0với\forall x\)

Dấu "=" xảy ra khi \(x-2014=0\Leftrightarrow x=2014\)

Do đó \(A\ge2+0=2với\forall x\)

Dấu "=" xảy ra khi \(2013\le x\le2015\)và \(x=2014\)\(\Leftrightarrow\)\(x=2014\)

Vậy \(minA=2\)khi\(x=2014\)

4 tháng 3 2018

Ta có: \(\left|x-2013\right|+\left|x-2015\right|=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|\)

                                                                         \(\left|x-2013\right|+\left|2015-x\right|\ge2\)\(\left(1\right)\)

                                                                   Và \(\left|2014-x\right|\ge0\)

                                                                  \(\Rightarrow\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|\ge2\)

                                                                Mà \(\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|=A\)

                                                                      \(\Rightarrow A\)có GTNN là 2

                                         Từ\(\left(1\right)\)

                                 \(\Rightarrow\)Dấu \("="\)xảy ra khi \(\left(x-2013\right)\left(2015-x\right)\ge0\)

                                                \(\Rightarrow2013\le x\le2015\)

                                                 \(\Rightarrow x=2014\)

                              Vậy, \(A\)có GTNN là 2 khi\(x=2014\)

9 tháng 8 2018

\(A=\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

ta có \(\hept{\begin{cases}\left|x+12\right|\ge0\\\left(y+2\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

\(\Rightarrow A_{min}=11\Leftrightarrow\hept{\begin{cases}x+12=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-2\end{cases}}}\)

15 tháng 6 2017

Ta có: (x - 2,5)2014 + |x + y + 0,5| = 0

Mà: (x - 2,5)2014 lớn hơn hoặc bằng 0 và |x + y + 0,5| cũng lớn hơn hoặc bằng 0

Nên để thỏa mãn đẳng thức đã cho thì: (x - 2,5)2014 = 0 và |x + y + 0,5| = 0 => x - 2,5 = 0 và x + y + 0,5 = 0

Với x - 2,5 = 0 => x = 2,5

Thay x = 2,5 vào x + y + 0,5 = 0 => y = -3

20 tháng 7 2018

\(A=\left|x-1\right|+2018\)

ta có :

\(\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)

\(\Rightarrow\left|x-1\right|+2018\ge2018\)

dấu "=" xảy ra khi :

\(\left|x-1\right|=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

vậy MinA = 2018 khi x = 1

20 tháng 7 2018

Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi

20 tháng 9 2016

|x - 1,3| + |2x - 1| = 0

Có |x - 1,3| \(\ge\)0

|2x - 1| \(\ge\)0

=> Để |x - 1,3| + |2x - 1| = 0

=> |x - 1,3| = 0 và |2x - 1| = 0

=> x - 1,3 = 0 và 2x - 1 = 0

=> x = 1,3 và 2x = 1

=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)

=> Không có giá trị của x thỏa mãn đề bài

11 tháng 11 2016

-10

khi x=-8

6 tháng 8 2017
    

Áp dụng bất đẳng thức |m|+|n||m+n| .Dấu = xảy ra khi m,n cùng dấu

A|xa+xb|+|xc+xd|=|2xab|+|c+d2x|

|2xab2x+c+d|=|c+dab|

Dấu = xảy ra khi xa và xb cùng dấu hay(xa hoặc xb)

                        xc và xd cùng dấu hay(xc hoặc xd)

                        2xab và c+d2x cùng dấu hay (x+b2xc+d)

Vậy Min A =c+d-a-b khi bxc