Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
\(x^2+4y^2-5x+10y-4xy+20\)
\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)
\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)
\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được :
\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)
\(B=x^2-2xy-2x+2y+y^2\)
\(=x^2-2xy+y^2-2\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được :
\(=1-2=-1\)
\(M=4x^2+y^2+1+4xy+4x+2y+6x^2-6x+1\)
\(M=\left(2x+y+1\right)^2+6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\frac{1}{2}=0\\2x+y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-2\end{matrix}\right.\)
\(A=10x^2+6xy+y^2-4x+3\)
\(A=9x^2+6xy+y^2+x^2-4x+4-1\)
\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)
Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)
Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)
Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)