Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta co góc BAD + góc ADC = 180 độ
mà góc ở vị trí trong cùng phía
=> AB//DC
b, Ta có góc ABC + góc xBC = 180 độ ( kề bù)
=> góc ABC = 180 - góc xBC = 180 -32 =148 độ
Ta có AB // DC hay Ax//DC
=> góc xBC = góc BCD = 32 độ ( sole trong)
a, Ta có \(\widehat{BAD}\) + \(\widehat{ADC}\) = 180 độ
mà 2 góc này ở vị trí trong cùng phía của AD cắt AB và CD
=> AB//DC
b, Ta có \(\widehat{ABC}\) + \(\widehat{xBC}\) = 180 độ ( kề bù)
=> \(\widehat{ABC}\) = 180 - \(\widehat{xBC}\) = 180 -32 =\(148^0\)
Ta có AB // DC hay Ax//DC
=> \(\widehat{xBC}\) = \(\widehat{BCD}\) = \(32^0\) ( so le trong)
Bài 1
1.\(x\left(x+3\right)\)
\(=x^2+3x\)
2.\(3x\left(x+2\right)\)
\(=3x^2+6x\)
3,\(x^2\left(3x-1\right)\)
\(=3x^3-x^2\)
4.\(-5x^3\left(3x^2-7\right)\)
\(=-15x^5+35x^3\)
5.\(3x\left(5x^2-2x-1\right)\)
\(=15x^3-6x^2-3x\)
6.\(-x^2\left(5x^3-x-\dfrac{1}{2}\right)\)
\(=-5x^5+x^3+\dfrac{x^2}{2}\)
7.\(\left(x^2+2x-3\right).\left(-x\right)\)
\(=-x^3-2x^2+3x\)
8.\(4x^3\left(-2x^2+4x^4-3\right)\)
\(=-8x^5+16x^7-12x^3\)
9.\(-5x^2\left(3x^2-2x+1\right)\)
\(=-15x^4+10x^3-5x^2\)
10.\(-4x^5\left(x^3-4x^2+7x-3\right)\)
\(=-4x^8+16x^7-28x^6+12x^5\)
11.\(\left(x+2\right)\left(x+3\right)\)
\(=x^2+3x+2x+6\)
12.\(\left(x-7\right)\left(x-5\right)\)
\(=x^2-5x-7x+35\)
13.\(\left(3x+5\right)\left(2x-7\right)\)
\(=6x^2-21x+10x-35\)
14.\(\left(x-3\right)\left(x^2-2x-1\right)\)
\(x^3-2x^2-x-3x^2+6x+3\)
15.\(\left(2x-1\right)\left(x^2-5x+3\right)\)
\(=2x^3-10x^2+6x-x^2+5x-3\)
16.\(\left(x-5\right)\left(-x^2+x-1\right)\)
\(=-x^3+x^2-x+5x^2-5x+5\)
17,\(\left(\dfrac{1}{2}x+3\right)\left(2x^2-4x-6\right)\)
\(=x^3-2x^2-3x+6x^2-12x-18\)
P/s:mình làm hơi tắt tại bài dài quá:))
2:
a: \(A\left(x\right)=3x^3-2x^2-5x+3\)
\(B\left(x\right)=5x^3+x^2+2x-1\)
b: A(x)+B(x)=8x^3-x^2-3x+2
c: A(x)-B(x)
=3x^3-2x^2-5x+3-5x^3-x^2-2x+1
=-2x^3-3x^2-7x+4
a/\(F\left(x\right)=-4x^2+7-6x+5x^3\)
\(=5x^3-4x^2-6x+7\)
\(G\left(x\right)=4x^2+9x-2x^4+4x^3-12\)
\(=-2x^4+4x^3+4x^2+9x-12\)
b/\(F\left(x\right)+G\left(x\right)=\left(5x^3-4x^2-6x+7\right)+\left(-2x^4+4x^3+4x^2+9x-12\right)\)
\(=5x^3-4x^2-6x+7-2x^4+4x^3+4x^2+9x-12\)
\(=\left(5x^3+4x^3\right)-\left(4x^2-4x^2\right)+\left(-6x+9x\right)-2x^4-\left(-7+12\right)\)
\(=9x^3-0+3x-2x^4-5\)
\(=9x^3+3x-2x^4-5\)
Câu 4:
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
a: \(=2x^2-3x+1+3x^2+2x-1=5x^2-x\)
b: \(=4x^3-2x^2+3x-2x^3-3x^2+4x=2x^3-5x^2+7x\)
c: \(=x^2-5x+6-3x^2+2x-1=-2x^2-3x+5\)
d: \(=2x^3+5x^2-3x+1-x^3+2x^2-x+1\)
\(=x^3+7x^2-4x+2\)
e: \(=3x^2+2x-4+4x^2-x+5=7x^2+x+1\)
f: \(=x^3-2x^2+5x-1-2x^3-3x^2+4x-2=-x^3-5x^2+9x-3\)
g: \(=4x^4-3x^3+x^2+2x-1+2x^3-4x^2+3x-1\)
\(=4x^4-x^3-3x^2+5x-2\)