K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

Bài 1:

- Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.

- Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)

- Với \(m=1\). Thế vào (1) ta được:

\(0x=0\) (phương trình vô số nghiệm).

\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)

- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)

Với \(m=-1\). Thế vào (1) ta được:

\(0x=-4\) (phương trình vô nghiệm)

Vậy với \(m=-1\) thì hệ đã cho vô nghiệm

Với \(m\ne\pm1,0\).

\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)

Thay vào (2) ta được:

\(\dfrac{3m+1}{m+1}+my=m+1\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)

\(\Leftrightarrow my\left(m+1\right)=m^2-m\)

\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)

\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)

Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).

 

29 tháng 12 2022

Bài 2:

\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)y-y=-6\)

\(\Leftrightarrow\left(4m+3\right)y=-6\)

\(\Rightarrow y=-\dfrac{6}{4m+3}\)

Để y nguyên thì:

\(6⋮\left(4m+3\right)\)

\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)

\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

4m+31236-1-2-3-6
m-1/2 (loại)

-1/4 (loại)

0 (nhận)3/4 (loại)-1 (nhận)-5/4 (loại)-3/2 (loại)-9/4 (loại)

\(\Rightarrow m\in\left\{0;-1\right\}\)

Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)

Thay vào (1) ta được:

\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)

Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.

Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.

Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)

Thay \(y=6\) vào (2) ta được:

\(4x-6=-2\)

\(\Leftrightarrow x=1\)

Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.

Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

7 tháng 1 2021

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

7 tháng 1 2021

Thanks bạn nhiều :))

 

10 tháng 3 2022

a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)

\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)

\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)

\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)

\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)

\(\Leftrightarrow m^4+3m^3+2m+1=0\)

bạn tự giải nhé 

\(\left\{{}\begin{matrix}2mx+y=1\\2x-\left(2m+1\right)y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\left(2m+1\right)y+y=1\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2y+my+y-1=0\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(2m^2+m+1\right)=1\left(1\right)\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

Để pt có nghiệm duy nhất tức là pt (1) có nghiệm duy nhất

\(\Leftrightarrow2m^2+m+1\ne0\Leftrightarrow m^2+\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) ( luôn đúng )

Vậy với mọi giá trị m thỏa mãn là pt có nghiệm duy nhất.