K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC