K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Hình tự vẽ nha!

a, Xét đường tròn (O) có: \(\widehat{BAE}=\widehat{CAE}\) (AE là p/g của tam giác ABC)

Mà \(\widehat{BAE}\) và \(\widehat{CAE}\) là 2 góc nội tiếp chắn cung BE và EC

\(\Rightarrow\) \(sđ\stackrel\frown{BE}=sđ\stackrel\frown{EC}\) (hệ quả góc nt)

\(\Rightarrow\) E nằm chính giữa cung BC

\(\Rightarrow\) OE \(\perp\) BC

Lại có: AH \(\perp\) BC (gt)

\(\Rightarrow\) OE//AH (đpcm)

b, Xét đường tròn (O) có: \(\widehat{MAE}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung AE (gt)

\(\Rightarrow\) \(\widehat{MAE}\) = \(\dfrac{1}{2}sđ\stackrel\frown{AE}\) (t/c góc tạo bởi tia tiếp tuyến và dây cung) (1)

Xét đường tròn (O) có: \(\widehat{MDA}\) là góc có đỉnh nằm bên trong đường tròn (gt)

\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)\)

Mà \(sđ\stackrel\frown{EC}=sđ\stackrel\frown{BE}\) (cma)

\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{MAE}=\widehat{MDA}\)

Xét tam giác MAD có: \(\widehat{MAD}=\widehat{MDA}\) (cmt)

\(\Rightarrow\) \(\Delta\)MAD cân tại M (định lý tam giác cân)

\(\Rightarrow\) MA = MD (đpcm)

c, Xét đường tròn tâm (O) có: \(\widehat{AEB}\) và \(\widehat{ACB}\) là 2 góc nt chắn cung AB (gt)

\(\Rightarrow\) \(\widehat{AEB}=\widehat{ACB}\) (Hệ quả góc nt)

Xét tam giác ABE và tam giác ADC có:

\(\widehat{AEB}=\widehat{ACD}\) (cmt)

\(\widehat{BAE}=\widehat{DAC}\) (vì AE là p/g của tam giác ABC)

\(\Rightarrow\) \(\Delta ABE\) ~ \(\Delta ADC\) (gg)

\(\Rightarrow\) \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\) (tỉ số đồng dạng)

\(\Rightarrow\) AD.AE = AC.AB (đpcm)

Chúc bn học tốt!

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 5 2022

O M A B C

Xét đường tròn tâm O ta có :

góc MAB = góc MCA = 1/2 sđ cung AB

Xét tam giác MAB và tam giác MCA có :

góc MAB = góc MCA 

góc AMC Chung 

=> \(\Delta MAB\sim\Delta MCA\)

=.> \(\dfrac{MA}{MC}=\dfrac{MB}{MA}\)

=> MA2=MC.MB

<=> 62=12.MB

=>MB =3cm 

vậy MB = 3 cm

1: Xét (O) co

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét tứ giác AHEC có

góc AHE+góc ACE=180 độ

=>AHEC là tứ giác nội tiếp

2: Xét ΔMBA và ΔMAC có

góc MBA=góc MAC

góc BMA chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MB*MC=MH*MO