K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Bài 4: 

a: \(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

=-8

 

21 tháng 10 2021

Bài 5: 

a: \(x\left(x-1\right)-x^2+4x=-3\)

\(\Leftrightarrow x^2-x-x^2+4x=-3\)

hay x=-1

i: \(x^2-9x+8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

5:

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>=3\cdot\sqrt[3]{\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{a}}=3\)

a^2+b^2>=2ab

b^2+c^2>=2bc

a^2+c^2>=2ac

=>a^2+b^2+c^2>=ab+bc+ac

=>(ab+bc+ac)/(a^2+b^2+c^2)>=1

=>a/b+b/c+c/a+(ab+ac+bc)/(a^2+b^2+c^2)>=4

12 tháng 12 2021

Câu c mình làm rồi: Mn ơi, hướng dẫn em cách để giống mẫu đi ạ! - Hoc24

\(d,\dfrac{x}{x^3-27}=\dfrac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x+2}{x^2-6x+9}=\dfrac{x+2}{\left(x-3\right)^2}=\dfrac{\left(x+2\right)\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x-1}{x^2+3x+9}=\dfrac{\left(x-1\right)\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)

\(f,\dfrac{x+2}{x^2-3x+2}=\dfrac{x+2}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(x+2\right)\left(2x-3\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\\ \dfrac{x}{-2x^2+5x-3}=\dfrac{-x}{\left(2x-3\right)\left(x-1\right)}=\dfrac{-x\left(x-2\right)}{\left(2x-3\right)\left(x-1\right)\left(x-2\right)}\\ \dfrac{2x+1}{-2x^2+7x-6}=\dfrac{-\left(2x+1\right)}{\left(x-2\right)\left(2x-3\right)}=\dfrac{-\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\)

NV
12 tháng 12 2021

\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)}{\left(2x+a\right)\left(3x-2a\right)}\)

\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{a-x}{\left(x+2a\right)\left(3x-2a\right)}\)

Do đó ta quy đồng:

\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)\left(x+2a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)

\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{\left(a-x\right)\left(2x+a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)

31 tháng 10 2021

a: Xét ΔBAC có 

D là trung điểm của AB

M là trung điểm của AC

Do đó: DM là đường trung bình của ΔABC

Suy ra: DM//BC và \(DM=\dfrac{BC}{2}=3.5\left(cm\right)\)

13 tháng 12 2021

đọc đề mà quạo lun ă:>

dễ mà tự lm ik:333

 

Bài 3: 

2) Ta có: \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+t\right)\)

\(=2x\left(y-z\right)-\left(x+t\right)\left(y-z\right)\)

\(=\left(y-z\right)\left(x-t\right)\)

\(=\left(24-10,6\right)\left(18,3+31,7\right)\)

\(=13,4\cdot50=670\)

3) Ta có: \(C=\left(x-y\right)\left(y+z\right)+y\left(y-x\right)\)

\(=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)

\(=z\left(x-y\right)\)

\(=1.5\left(0.86-0.26\right)\)

\(=0,9\)

NV
12 tháng 1 2022

1.

Với \(n=0;1\) không thỏa mãn

Với \(n>1\)

\(A=\left(n^2+n\right)^2+n^2+3n+7>\left(n^2+n\right)^2\)

\(A=\left(n^2+n+2\right)^2-\left[3\left(n^2-1\right)+n\right]< \left(n^2+n+2\right)^2\)

\(\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+2\right)^2\)

\(\Rightarrow A=\left(n^2+n+1\right)^2\)

\(\Rightarrow n^4+2n^3+2n^2+3n+7=\left(n^2+n+1\right)^2\)

\(\Rightarrow n^2-n-6=0\Rightarrow\left[{}\begin{matrix}n=-2\left(loại\right)\\n=3\end{matrix}\right.\)

NV
12 tháng 1 2022

3.

TH1:

\(x>y\Rightarrow x^2y^2+x-y>x^2y^2\)

Mặt khác x; y nguyên dương \(\Rightarrow y\ge1\Rightarrow xy-\left(x-y\right)=x\left(y-1\right)+y>0\Rightarrow xy>x-y\)

\(\Rightarrow2xy+1>x-y\Rightarrow x^2y^2+x-y< x^2y^2+2xy+1\)

\(\Rightarrow x^2y^2< x^2y^2+x-y< \left(xy+1\right)^2\)

\(\Rightarrow x^2y^2+x-y\) nằm giữa 2 SCP liên tiếp nên ko thể là SCP (trái giả thiết) \(\Rightarrow\) loại

TH2: \(x< y\Rightarrow x^2y^2+x-y< x^2y^2\)

\(x-y-\left(-2xy+1\right)=\left(x-1\right)+y\left(2x-1\right)>0\Rightarrow x-y>-2xy+1\)

\(\Rightarrow x^2y^2+x-y>x^2y^2-2xy+1=\left(xy-1\right)^2\)

\(\Rightarrow\left(xy-1\right)^2< x^2y^2+x-y< x^2y^2\)

\(\Rightarrow x^2y^2+x-y\) nằm giữa 2 SCP liên tiếp \(\Rightarrow\) ko thể là SCP => trái giả thiết => loại

Vậy \(x=y\)