Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow\left|\dfrac{3}{4}+x\right|=0\Rightarrow\dfrac{3}{4}+x=0\Rightarrow x=-\dfrac{3}{4}\)
b) \(\Rightarrow x+0,4=\dfrac{4}{9}:\dfrac{2}{3}=\dfrac{2}{3}\Rightarrow x=\dfrac{2}{3}-0,4=\dfrac{4}{15}\)
\(=\left(\dfrac{7}{4}.\dfrac{2}{7}\right).\dfrac{4}{5}=\dfrac{1}{2}.\dfrac{4}{5}=\dfrac{2}{5}\)
a/\(\left(1,75:\dfrac{7}{2}\right).\dfrac{4}{5}=\left(\dfrac{7}{4}:\dfrac{7}{2}\right).\dfrac{4}{5}=\dfrac{1}{2}.\dfrac{4}{5}\dfrac{2}{5}\)
Bài 1:
\(a,A=\dfrac{22}{7}-\dfrac{22}{7}-0,25-0,75-4=-1-4=-5\\ b,B=\dfrac{1\cdot\left(\dfrac{2}{5}\right)^3\cdot\left(\dfrac{15}{4}\right)^2}{\left(\dfrac{15}{2^2}\right)^2\cdot\left(\dfrac{2}{5}\right)^3}=1\)
Bài 2:
\(a,\Rightarrow2^{x+3}=13,9+2,1=16=2^4\\ \Rightarrow x+3=4\Rightarrow x=1\\ b,\Rightarrow\left|x-\dfrac{3}{2}\right|=0,5=\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{3}{2}=2\\x=-\dfrac{1}{2}+\dfrac{3}{2}=1\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{2x-5y}{2\cdot2-5\cdot7}=\dfrac{93}{-31}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-6\\y=-21\end{matrix}\right.\)
b: \(\Leftrightarrow x+\dfrac{2}{5}=\dfrac{2}{3}\)
hay \(x=\dfrac{1}{15}\)
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
Bài 2: Chọn C
Bài 4:
a: \(\widehat{C}=180^0-80^0-50^0=50^0\)
Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)
nên BC=AB<AC
b: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
\(=\dfrac{101}{2}\left(4+\dfrac{5}{3}-2-\dfrac{5}{3}\right)=\dfrac{101}{2}\cdot2=101\)