K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2022

6.

SAB cân tại S \(\Rightarrow SH\perp AB\)

Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)

Hay SH alf đường cao của chóp

3 tháng 5 2022

\(y=tan\left(\sqrt{x^2+4}\right)\Rightarrow y'=\dfrac{1}{cos^2\left(\sqrt{x^2+4}\right)}.\left(\sqrt{x^2+4}\right)'\)

\(\left(\sqrt{x^2+4}\right)'=\dfrac{1}{2\sqrt{x^2+4}}\left(x^2+4\right)'=\dfrac{2x}{2\sqrt{x^2+4}}=\dfrac{x}{\sqrt{x^2+4}}\)

Suy ra : \(y'=\dfrac{x}{cos^2\left(\sqrt{x^2+4}\right).\sqrt{x^2+4}}\)

NV
17 tháng 4 2022

7.

\(y'=3x^2+8x-1\)

\(\Rightarrow y'\left(2\right)=3.2^2+8.2-1=27\)

NV
2 tháng 11 2021

\(sin\left(3x+\pi\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\pi=2x+k2\pi\\3x+\pi=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)

(Lưu ý rằng \(x=-\pi+k2\pi\) và \(x=\pi+k2\pi\) là giống nhau về bản chất nên khi ghi nghiệm ghi là \(-\pi+k2\pi\) cũng được mà \(\pi+k2\pi\) cũng được)

3 tháng 10 2021

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

NV
16 tháng 11 2021

Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?

\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)

\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)

\(\Leftrightarrow cos^22x+3cos2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow...\)

NV
29 tháng 12 2021

Qua S kẻ đường thẳng d song song BC \(\Rightarrow s=\left(SBC\right)\cap\left(SAD\right)\)

Nối PM kéo dài cắt d tại Q \(\Rightarrow Q\in\left(SAD\right)\)

Trong mp (SAD), nối QN cắt SA tại E và AD tại F

\(\Rightarrow E=SA\cap\left(MNP\right)\)

Do \(SQ||BC\) , theo Talet: \(\dfrac{SQ}{BP}=\dfrac{SM}{BM}=1\Rightarrow SQ=BP=\dfrac{1}{2}BC=\dfrac{1}{2}AD\)

Do \(SQ||AD\Rightarrow\dfrac{SQ}{DF}=\dfrac{SN}{ND}=1\Rightarrow DF=SQ=\dfrac{1}{2}AD\)

\(\Rightarrow AF=AD+DF=\dfrac{3}{2}AD\)

\(\Rightarrow\dfrac{SE}{AE}=\dfrac{SQ}{AF}=\dfrac{\dfrac{1}{2}AD}{\dfrac{3}{2}AD}=\dfrac{1}{3}\Rightarrow SE=\dfrac{1}{3}AE\)

\(\Rightarrow\dfrac{SE}{SA}=\dfrac{1}{4}\)

NV
29 tháng 12 2021

undefined