Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow\left(2x+2-1\right)\left(2x+2+1\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow\left(\left(2x+2\right)^2-1\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow4\left(x+1\right)^4-\left(x+1\right)^2-18=0\)
Đặt t = \(\left(x+1\right)^2\) \(\left(t\ge0\right)\)
pt \(\Leftrightarrow4t^2-t-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{9}{4}\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1\right)^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+1-\dfrac{3}{2}\right)\left(x+1+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)-18=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\Rightarrow a\left(4a-1\right)-18=0\)
\(\Leftrightarrow4a^2-a-18=0\)
\(\Leftrightarrow\left(4a^2+8a\right)+\left(-9a-18\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(4a-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=\frac{9}{4}\end{cases}}\)
\(\Rightarrow x^2+2x+1=\frac{9}{4}\)
\(\Leftrightarrow4x^2+8x-5=0\)
\(\Leftrightarrow\left(4x^2-2x\right)+\left(10x-5\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)
(2x+1)(x+1)2(2x+3)=18
<=> (2x+2-1)(x+1)2(2x+2+1)=18
Đặt y=x+1, ta có:
(2y-1)y2(2y+1)=18
Ta có
(2x+1)(x+1)2(2x+3)=18
=> (x+1)2(4x2+8x+3)-18=0
=> (x2+2x+1)(4x2+8x+3)-18=0
Đặt x2+2x+1=a ta có
a.(4a-1)-18=0
=> 4a2-a-18=0
=> 4a2 +8a-9a-18=0
=> 4a(a+2)-9(a+2)=0
=> (a+2)(4a-9)=0
Với a=x2+2x+1biểu thức trên trở thành
(x2+2x+3)(4x2+8x-5)=0
=> x2+2x+3=0 hoặc 4x2+8x-5=0
• x2+2x+3=0 => phương trình vô nghiệm
• 4x2+8x-5=0 => x=1/2 hoặc x=-5/2
Vậy x=1/2 và x=-5/2 là nghiệm của phương trình
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+1=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)