K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

hic, mk chx học

28 tháng 4 2020

1,(3x-2)(4x+5)=0

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\4x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là ...

2,\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow10x-20x+2x=15-28+19-22\)

\(\Leftrightarrow-8x=-16\)

=> x= 2

vậy..

3,\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\right)-4=0\)

\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}-4=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}=0\) ( vô nghiệm )

(vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}\ge0\) )

từ đó suy ra phương trình vô nghiệm

5,\(\frac{4x+3}{2}-2+3x=\frac{2x-1}{10}+\frac{19x+2}{5}-1\)

\(\Leftrightarrow\frac{5\left(4x+3\right)}{10}-\frac{10\left(2-3x\right)}{10}=\frac{2x-1}{10}+\frac{2\left(19x+2\right)}{10}-\frac{10}{10}\)

\(\Leftrightarrow\frac{20x+15}{10}-\frac{20-30x}{10}=\frac{2x-1}{10}+\frac{38x+4}{10}-\frac{10}{10}\)

\(\Rightarrow20x+15-20+30x=2x-1+38x+4-10\)

\(\Leftrightarrow20x+30x-2x-38x=-15+20-1+4-10\)

\(\Leftrightarrow10x=-2\)

\(\Leftrightarrow x=-5\)

Vậy ....

p/s : thực ra mk cx chỉ ms học th nên giải bài tập về phương trình vẫn còn nhiều chỗ sai nữa,có gì mong mn giúp đỡ :)

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

20 tháng 1 2019

\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)

Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)

\(\Leftrightarrow4x-2-6x-3=4\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)

\(b,ĐKXĐ:x\ne\pm1;-3\)

Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)

\(\Leftrightarrow9x^2+14x+13=0\)

\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)

\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)

Pt vô nghiệm 

\(c,ĐKXĐ:x\ne1\)

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)

Kết hợp vs ĐKXĐ được x = -1

Vậy pt có nghiệm duy nhất x = -1

20 tháng 1 2019

làm lần lượt nha(bài nào k bt bỏ qua)

\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow-2x-5=4\)

\(\Rightarrow-2x=9\)

\(\Rightarrow x=\frac{9}{-2}\)

21 tháng 5 2021

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)

\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)

\(< =>12x-20-14x-21=0\)

\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)

21 tháng 5 2021

\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)

\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)

\(< =>8x+12+4x-2x+3=0\)

\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

15 tháng 4 2020

1, Đk x≠2;-2

\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\\ =>\frac{x+2}{2\left(x-2\right)}-\frac{4x}{\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{\left(x+2\right)^2}{2\left(x^2-4\right)}-\frac{8x}{2\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{x^2+4x+4-8x}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x-2}{2\left(x+2\right)}=0\\ =>x-2=0\\ =>x=2\left(loại\right)\)