Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\Leftrightarrow\left(12x^2+12x+11\right)\left(y^2-2y+2\right)=\left(4x^2+4x+3\right)\left(5y^2-10y+9\right)\)
\(\Leftrightarrow12x^2y^2-24x^2y+24x^2+12xy^2-24xy+24x+11y^2-22y+22=20x^2y^2-40x^2y+36x^2+20xy^2-40xy+36x+15y^2-30y+36\)
Có sai đề ko cậu
a/ ĐKXĐ: ...
Đặt \(x^2-x=t\)
\(\frac{t}{t+1}-\frac{t+2}{t-2}=1\Leftrightarrow t\left(t-2\right)-\left(t+1\right)\left(t+2\right)=\left(t+1\right)\left(t-2\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=0\\x^2-x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0;1\\x^2-x+4=0\left(vn\right)\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{3\left(2x+1\right)^2+8}{\left(2x+1\right)^2+2}=\frac{5\left(y-1\right)^2+4}{\left(y-1\right)^2+1}\)
Đặt \(\left\{{}\begin{matrix}2x+1=a\\y-1=b\end{matrix}\right.\)
\(\Rightarrow\frac{3a^2+8}{a^2+2}=\frac{5b^2+4}{b^2+1}\Leftrightarrow\left(3a^2+8\right)\left(b^2+1\right)=\left(a^2+2\right)\left(5b^2+4\right)\)
\(\Leftrightarrow3a^2b^2+3a^2+8b^2=5a^2b^2+4a^2+10b^2\)
\(\Leftrightarrow2a^2b^2+a^2+2b^2=0\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
b) \(-x^2-12x+21=\left(3-x\right)\left(x+11\right).\)
\(\Leftrightarrow-x^2-12x+21=-x^2-8x+33\)
\(\Leftrightarrow33+4x=21\)
\(\Leftrightarrow-4x=12\)
\(\Rightarrow x=-3\)
c,\(9x+5x^2+1=5x^2-22+13x\)
\(\Leftrightarrow4x-22=1\)
\(\Leftrightarrow4x=23\)
\(\Rightarrow x=\frac{23}{4}\)
Mk làm mẫu cho 1 pt nha !
a,
pt <=> 4x^2-7x+5 = 2x^2-5x-18
<=> (4x^2-7x+5)-(2x^2-5x-18) = 0
<=> 4x^2-7x+5-2x^2+5x+18 = 0
<=> 2x^2-2x+23 = 0
<=> x^2-x+23/2 = 0
<=> (x^2-x+1/4)+45/4 = 0
<=> (x-1/2)^2+45/4 = 0
=> pt vô nghiệm [ vì (x-1/2)^2+45/4 > 0 ]
P/S: Tham khảo nha
Ta có : \(\frac{12x^2+12x+11}{4x^2+4x+3}=\frac{5y^2-10y+9}{y^2-2y+2}\)
\(\Leftrightarrow\frac{3\left(4x^2+4x+3\right)+2}{4x^2+4x+3}=\frac{5\left(y^2-2y+2\right)-1}{y^2-2y+2}\)
\(\Leftrightarrow3+\frac{2}{4x^2+4x+3}=5-\frac{1}{y^2-2y+2}\)
Do \(\frac{2}{4x^2+4x+3}=\frac{2}{\left(2x+1\right)^2+2}\le\frac{2}{2}=1\) \(\Rightarrow3+\frac{2}{4x^2+4x+3}\le4\left(1\right)\)
\(\frac{1}{y^2-2y+2}=\frac{1}{\left(y-1\right)^2+1}\le\frac{1}{1}=1\) \(\Rightarrow5-\frac{1}{y^2-2y+2}\ge5-1=4\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow VT=VP=4\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)
Vậy ....