K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

sory doan cuoi minh lam sai minh lam lai nhe

pt<=>1/(y-1)(y-2) + 1/(y-2)(y-3) + 1/(y-3)(y-4) + 1(y-4)(y-5)=1/15

=>1/(y-1) -1/(y-2)+1/(y-2)-1/(y-3)+1/(y-3)-1/(y-4)+1/(y-4)-1/(y-5)=1/15

=>1/(y-1) - 1/(y-5)=1/15

=>4/(y-1)(y-5)=1/15

=> (y-1)(y-5)=60

=> y2-6y+5-60=0

=>y2-6y-55=0

=> (y-11)(y+5)=0

=>y=11 hoac y=-5

11 tháng 1 2018

pt<=> 1/(y-1)(y-2) + 1/(y-2)(y-3) + 1/(y-3)(y-4) + 1/(y-4)(y-5)=1/15

=>1/(y-1)-1/(y-2)+1/(y-2)-1/(y-3)+1/(y-3)-1/(y-4)+1/(y-4)-1/(y-5)=1/15

=>1/(y-1)-1/(y-5)=1/15

=>(y-1)(y-5)=-4.15=-60

=>y2-6y+65=0 k tim dc nghiem

14 tháng 1 2021

a) ĐKXD: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)

\(\Leftrightarrow-2+x=-3\left(x-2\right)\)

\(\Leftrightarrow-2+x=-3x+6\)

\(\Leftrightarrow x+3x=6+2\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)

Vậy S = ∅

b) ĐKXĐ: x ≠ 7

 \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)

\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)

\(\Leftrightarrow-1=8\left(vô-lý\right)\)

Vậy S = ∅ 

P/s: Ko chắc ạ! 

14 tháng 1 2021

c) ĐKXĐ: x ≠ 1

\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)

Quy đồng và khử mẫu ta được:

\(x^2+x+1+2x\left(x-1\right)=3x^2\)

\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)

\(\Leftrightarrow-x+1=0\)

\(\Leftrightarrow x=1\) (loại vì ko t/m đk)

Vậy S = ∅

 

22 tháng 2 2019

\(a.\Leftrightarrow\frac{5x^2+16}{\left(x+4\right)\left(x-4\right)}=\frac{\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}DKXD:x\ne4;-4\)

\(\Rightarrow5x^2+16=2x^2-8x-x+4+3x^2+12x-x-4\)

\(\Leftrightarrow2x=16\)

\(\Leftrightarrow x=8\)

\(b.\Leftrightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}.DKXD:y\ne2;-2\)

\(\Rightarrow y^2+2y+y+2-5y+10=12+y^2-4\)

\(\Leftrightarrow-2y=-4\)

\(\Leftrightarrow y=2\)

ĐKXĐ: y<>0

\(y^2\left[\dfrac{1}{y\left(y-1\right)+1}-\dfrac{1}{y\left(y+1\right)+1}\right]=\dfrac{3}{y\left(y^4+y^2+1\right)}+\dfrac{2y-2}{y^2-y+1}\)

=>\(y^2\cdot\dfrac{y\left(y+1\right)+1-y\left(y-1\right)-1}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}+\dfrac{2y-2}{y^2-y+1}\)

=>\(y^2\cdot\dfrac{y\left(y+1-y+1\right)}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3+\left(2y-2\right)\cdot y\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)

=>\(y^2\cdot\dfrac{y\cdot2\cdot y}{\left(y^2-y+1\right)\cdot\left(y^2+y+1\right)\cdot y}=\dfrac{3+2y\left(y-1\right)\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)

=>\(2y^2\cdot y^2=3+2y\left(y^3-1\right)\)

=>\(2y^4=3+2y^4-2y\)

=>3-2y=0

=>2y=3

=>\(y=\dfrac{3}{2}\left(nhận\right)\)

20 tháng 1

Em cảm ơn ạ.

a) Ta có: \(\dfrac{3x^2-12x+12}{x^2-4}\)

\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{3\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{3\left(x-2\right)}{x+2}\)

\(=\dfrac{3\cdot\left(\dfrac{-1}{4}-2\right)}{\dfrac{-1}{4}+2}=-\dfrac{27}{7}\)

b) Ta có: \(\dfrac{x^2-5x-6}{x^2-9}\)

\(=\dfrac{\left(x-6\right)\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{\left(-1-6\right)\left(-1+1\right)}{\left(-1-3\right)\left(-1+3\right)}\)

=0

 

1:

a: =>28x-8=9x+3

=>19x=11

=>x=11/19

b: =>(3x-1)(x-1)=(2x+1)(x+1)

=>3x^2-4x+1=2x^2+3x+1

=>x^2-7x=0

=>x=0 hoặc x=7

16 tháng 7 2021

Cảm ơnn

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải

a)

\(\left(\frac{3}{2x-y}-\frac{2}{2x+y}-\frac{1}{2x-5y}\right).\frac{4x^2-y^2}{y^2}\)

\(=\frac{3(4x^2-y^2)}{(2x-y)y^2}-\frac{2(4x^2-y^2)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x-y)(2x+y)}{(2x-y)y^2}-\frac{2(2x-y)(2x+y)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x+y)-2(2x-y)}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{2x+5y}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{(2x+5y)(2x-5y)-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{4x^2-25y^2-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}=\frac{-25}{2x-5y}+\frac{1}{2x-5y}=\frac{-24}{2x-5y}\)

Ta có đpcm.

b) 

\(\frac{x^2-x+1}{x^2+x}.\frac{x+1}{3x-2}.\frac{9x-6}{x^2-x+1}\)

\(=\frac{(x^2-x+1)(x+1).3(3x-2)}{x(x+1)(3x-2)(x^2-x+1)}\)

\(=\frac{3}{x}\) (đpcm)

22 tháng 7 2018

Cám ơn ạ :)