Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{6x+5}{12x+9}-\frac{3x-7}{12x-9}=\frac{4x^2+10x-7}{16x^2-9}.\)
\(\Leftrightarrow\frac{\left(6x+5\right)\left(12x-9\right)-\left(3x-7\right)\left(12x+9\right)}{\left(3.4.x\right)^2-\left(3.3\right)^2}=\frac{4x^2+10x-7}{16x^2-9}\)
\(\Leftrightarrow\frac{72x^2+6x-45-\left(36x^2-57x-63\right)}{3^2\left(16x^2-9\right)}=\frac{4x^2+10x-7}{16x^2-9}\)
ĐK: \(16x^2-9\ne0\Leftrightarrow x^2\ne\left(\frac{3}{4}\right)^2\Rightarrow x\ne\pm\frac{3}{4}\)
\(\Leftrightarrow72x^2+6x-45-36x^2+57x+63=36x^2+90x-63\)
\(\Leftrightarrow27x=81\Leftrightarrow x=3\)
bài 1 :
\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=\frac{1}{2}\)
bài 2 :
\(\Leftrightarrow\left(2x+1\right)\left(3x+2\right)\left(12x+7\right)^2-3=\left(3x+1\right)\left(6x+5\right)\left(48x^2+56x+19\right)\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow6x+5=0\)
\(\Rightarrow6x=-5\)
Áp dụng Delta ta có :
\(\Rightarrow48x^2+56x+19=0\)
\(\Rightarrow56^2-4\left(48.19\right)=-512\)
=>D<0 ko có nghiệm thực ( ko có hình tam giác nên thay tạm )
\(\Rightarrow x=-\frac{5}{6}\) hoặc \(x=-\frac{1}{3}\)
tôi nhớ có 1 lần tôi làm mà ông ko tik nhé
a/ 2x(8x - 1)2(4x - 1) = 9
=> (64x2 - 16x + 1) (8x2 - 2x) = 9
- Nhân 2 vế cho 8 ta đc:
(64x2 - 16x + 1) (64x2 - 16x) = 72
- Đặt a = 64x2 - 16x ta đc:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a - 8)(a + 9) = 0
=> a = 8 hoặc a = -9
- Với a = 8 => 64x2 - 16x = 8 => 64x2 - 16x - 8 = 0 => (2x - 1)(4x + 1) = 0 => x = 1/2 hoặc x = -1/4
- Với a = -9 => 64x2 - 16x = -9 => 64x2 - 16x + 9 = 0 , mà 64x2 - 16x + 9 > 0 => pt vô nghiệm
Vậy x = 1/2 , x = -1/4
\(\dfrac{6x+5}{12x+9}+\dfrac{3x-7}{9-12x}=\dfrac{4x^2+10x-7}{16x^2-9}\)
\(\Leftrightarrow\dfrac{6x+5}{3\left(4x+3\right)}-\dfrac{3x-7}{3\left(4x-3\right)}=\dfrac{12x^2+30x-21}{3\left(4x-3\right)\left(4x+3\right)}\)
\(\Leftrightarrow\left(6x+5\right)\left(4x-3\right)-\left(3x-7\right)\left(4x+3\right)=12x^2+30x-21\)
\(\Leftrightarrow24x^2-18x+20x-15-\left(12x^2+9x-28x-21\right)=12x^2+30x-21\)
\(\Leftrightarrow24x^2+2x-15-12x^2+19x+21=12x^2+30x-21\)
=>31x+6=30x-21
=>x=-27
\(a.\) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\) \(\left(1\right)\)
Đặt \(t=x^2+1\) , khi đó phương trình \(\left(1\right)\) trở thành:
\(t^2+3xt+2x^2=0\)
\(\Leftrightarrow\) \(\left(t+x\right)\left(t+2x\right)=0\)
\(\Leftrightarrow\) \(^{t+x=0}_{t+2x=0}\)
\(\text{*}\) \(t+x=0\)
\(\Leftrightarrow\) \(x^2+x+1=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\) với mọi \(x\) nên phương trình vô nghiệm
\(\text{*}\) \(t+2x=0\)
\(\Leftrightarrow\) \(x^2+2x+1=0\)
\(\Leftrightarrow\) \(\left(x+1\right)^2=0\)
\(\Leftrightarrow\) \(x+1=0\)
\(\Leftrightarrow\) \(x=-1\)
Vậy, tập nghiệm của pt là \(S=\left\{-1\right\}\)
\(b.\) \(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow\) \(x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow\) \(x^4-18x^2-12x+80=0\)
\(\Leftrightarrow\) \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow\) \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)
Vì \(x^2+6x+10=\left(x+3\right)^2+1\ne0\) với mọi \(x\)
\(\Rightarrow\) \(\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\) \(^{x_1=2}_{x_2=4}\)
Vậy, phương trình đã cho có các nghiệm \(x_1=2;\) \(x_2=4\)
\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`a)16x^2-24x+9=25`
`<=>(4x-3)^2=25`
`+)4x-3=5`
`<=>4x=8<=>x=2`
`+)4x-3=-5`
`<=>4x=-2`
`<=>x=-1/2`
`b)x^2+10x+9=0`
`<=>x^2+x+9x+9=0`
`<=>x(x+1)+9(x+1)=0`
`<=>(x+1)(x+9)=0`
`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2+2x-6x-12=0`
`<=>x(x+2)-6(x+2)=0`
`<=>(x+2)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2+x-6x-6=0`
`<=>x(x+1)-6(x+1)=0`
`<=>(x+1)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
`e)4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+(x-1)=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\)
`f)x^4+4x^2-5=0`
`<=>x^4-x^2+5x^2-5=0`
`<=>x^2(x^2-1)+5(x^2-1)=0`
`<=>(x^2-1)(x^2+5)=0`
Vì `x^2+5>=5>0`
`=>x^2-1=0<=>x^2=1`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
\(b,3x^2+7x+2=0\\ \Leftrightarrow3x^2+x+6x+2=0\\ \Leftrightarrow x\left(3x+1\right)+2\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
\(c,4x^2-12x+9=0\\ \Leftrightarrow\left(2x-3\right)^2\Leftrightarrow2x-3=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(d,x^2-10x-2000=0\\ \Leftrightarrow\left(x-50\right)\left(x+40\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-50=0\\x+40=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
ý a, hình như sai đề bn kiểm tra lại ik nha!
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?