K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Đáp án B

3 tháng 2 2017

Đặt u = π/2 - x thì u' = -1

Giải bài tập Toán 11 | Giải Toán lớp 11

Do cos⁡(π/2-x) = sin⁡x

7 tháng 7 2017

27 tháng 9 2019

a) Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.

Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.

Vì hàm số y = sin4x là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.

Các hàm số y = sin4x (C1) và y = sin4x + 1 (C2) có đồ thị như trên hình 1 và hình 2.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Vì sin4x + 1 = m ⇔ sin4x = m – 1

và -1 ≤ sin4x ≤ 1

nên -1 ≤ m – 1 ≤ 1

⇔ 0 ≤ m ≤ 2.

Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.

c) Phương trình tiếp tuyến của (C2) có dạng

y   -   y o   =   y ’ ( x o ) ( x   -   x o ) .

Giải sách bài tập Toán 11 | Giải sbt Toán 11

8 tháng 7 2018

a) + Hàm số y = cos x có chu kì 2π.

Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.

⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

Từ đó suy ra

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

b. y = f(x) = cos 2x

⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.

Và 1 + cos22x > 0; ∀ x

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11 luôn xác định với mọi x ∈ R.

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lê Huy Hoàng:

a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên

PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$

$\Leftrightarrow (\tan x-2)^2+1=0$

$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)

Do đó pt vô nghiệm.

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

c)

ĐK:.............

PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$

$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$

$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên

d)

ĐK:.......

PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$

$\Leftrightarrow \tan ^2x+\tan x-2=0$

$\Leftrightarrow (\tan x-1)(\tan x+2)=0$

$\Rightarrow \tan x=1$ hoặc $\tan x=-2$

$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.