Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
ta có cos2x - √3sin2x= 1
⇔ 1 2 cos 2x - 3 2 . sin 2 x = 1 2 ⇔ sin π 6 . c os2x - cos π 6 . sin2x = 1 2 ⇔ sin π 6 − 2 x = sin π 6 ⇔ π 6 − 2 x = π 6 + k 2 π π 6 − 2 x = π − π 6 + k 2 π ⇔ x = − k π x = − π 3 − k π ⇔ x = l π x = − π 3 + l π ( l = − k ∈ Z )
Suy ra phương trình chỉ có một nghiệm thuộc(0;π) là x = 2 π 3
a) Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.
Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.
Vì hàm số y = sin4x là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.
Các hàm số y = sin4x (C1) và y = sin4x + 1 (C2) có đồ thị như trên hình 1 và hình 2.
b) Vì sin4x + 1 = m ⇔ sin4x = m – 1
và -1 ≤ sin4x ≤ 1
nên -1 ≤ m – 1 ≤ 1
⇔ 0 ≤ m ≤ 2.
Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.
c) Phương trình tiếp tuyến của (C2) có dạng
y - y o = y ’ ( x o ) ( x - x o ) .
a) + Hàm số y = cos x có chu kì 2π.
Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.
⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.
Từ đó suy ra
b. y = f(x) = cos 2x
⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.
⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:
c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.
Và 1 + cos22x > 0; ∀ x
⇒ luôn xác định với mọi x ∈ R.
Thấy : \(cos\) \(2x=1-2sin^2\left(x\right)\)
\(sin2x=2sinx.cosx\)
Thay vào ta được :
9 sinx + 6cosx - 6. sinx.cosx +1 -2.sin^2(x) -8 =0
9. (sinx-1) + 6.cosx. (1-sinx) +2 -2.sin^2(x) =0
9.(sinx-1) + 6cosx.(1-sinx) +2. (1-sinx) (1+sinx) =0
* TH1 : sinx=1 -> x =.....
* TH2 : sinx khác 1
Chia cả 2 vế cho sinx-1 ta được :
9 - 6.cosx -2 (1+sinx) =0
<--> 7 -6cosx - 2.sinx = 0
<--> 7- 4.cosx -2. (sinx+cosx)= 0
<-->7 - 4.cosx -2.căn2. sin(x+45) = 0 (1)
ta thấy Vế trái luôn > 0 với mọi x nên (1) vô nghiệm
Kết luận : sinx=1