K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

2 tháng 5 2019

Chọn D

ta có cos2x - √3sin2x= 1

⇔ 1 2 cos 2x -   3 2 . sin 2 x =    1 2 ⇔ sin   π 6 . c os2x - cos π 6 . sin2x =  1 2 ⇔ sin   π 6 − 2 x  =  sin π 6 ⇔ π 6 − 2 x =    π 6 + ​ k 2 π π 6 − 2 x =    π − π 6 + ​ k 2 π ⇔ x = − k π x =    − π 3 − k π ⇔ x = l π x =    − π 3 + ​ l π ​​       ( l = − k    ∈ Z )

Suy ra phương trình chỉ có một nghiệm thuộc(0;π) là  x   =   2 π 3

27 tháng 9 2019

a) Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.

Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.

Vì hàm số y = sin4x là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.

Các hàm số y = sin4x (C1) và y = sin4x + 1 (C2) có đồ thị như trên hình 1 và hình 2.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Vì sin4x + 1 = m ⇔ sin4x = m – 1

và -1 ≤ sin4x ≤ 1

nên -1 ≤ m – 1 ≤ 1

⇔ 0 ≤ m ≤ 2.

Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.

c) Phương trình tiếp tuyến của (C2) có dạng

y   -   y o   =   y ’ ( x o ) ( x   -   x o ) .

Giải sách bài tập Toán 11 | Giải sbt Toán 11

8 tháng 7 2018

a) + Hàm số y = cos x có chu kì 2π.

Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.

⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

Từ đó suy ra

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

b. y = f(x) = cos 2x

⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.

Và 1 + cos22x > 0; ∀ x

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11 luôn xác định với mọi x ∈ R.

2 tháng 9 2016

  Thấy : \(cos\) \(2x=1-2sin^2\left(x\right)\)  
\(sin2x=2sinx.cosx\)
Thay vào ta được : 
9 sinx + 6cosx - 6. sinx.cosx +1 -2.sin^2(x) -8 =0 
9. (sinx-1) + 6.cosx. (1-sinx) +2 -2.sin^2(x) =0 
9.(sinx-1) + 6cosx.(1-sinx) +2. (1-sinx) (1+sinx) =0 
* TH1 : sinx=1 -> x =..... 
* TH2 : sinx khác 1 
Chia cả 2 vế cho sinx-1 ta được : 
9 - 6.cosx -2 (1+sinx) =0 
<--> 7 -6cosx - 2.sinx = 0 
<--> 7- 4.cosx -2. (sinx+cosx)= 0 
<-->7 - 4.cosx -2.căn2. sin(x+45) = 0 (1) 
ta thấy Vế trái luôn > 0 với mọi x nên (1) vô nghiệm 
Kết luận : sinx=1

27 tháng 8 2017

21 tháng 3 2017

Đáp án D

23 tháng 3 2018

Đáp án A