Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
b) DC2=AC2+ AD2
=> DC2=16+1
=> DC2=17
VẬY DC=\(\sqrt{17}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
(Mình vẽ hình xấu hoắc à! Mà nhớ bài này giải rồi)
a) Ta có \(\Delta ABC\)cân tại \(A\Rightarrow AK\)vừa là đường cao vừa là trung tuyến (vừa là phân giác (*))
\(\Rightarrow KB=KC\)
b) Xét \(\Delta AMK\)và \(\Delta ANK\)có:
\(AK\): chung
\(\widehat{AMK}=\widehat{ANK}=90\)độ (gt)
\(\widehat{MAK}=\widehat{NAK}\)(Từ (*) ở câu a)
\(\Rightarrow\Delta AMK=\Delta ANK\left(g.c.g\right)\)
\(\Rightarrow KM=KN\)(hai cạnh tương ứng)
c) Từ cm câu b \(\Rightarrow AM=AN\)(hai cạnh tương ứng)
Ta có: \(\hept{\begin{cases}AM=AN\left(cmt\right)\\KM=KN\left(cmt\right)\end{cases}}\)
\(\Rightarrow AK\)là đường trung trực của \(MN\Rightarrow AK⊥MN\)
Ta lại có: \(\hept{\begin{cases}MN⊥AK\left(cmt\right)\\BC⊥AK\left(gt\right)\end{cases}}\)
\(\Rightarrow MN\)// \(BC\)