K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Ta có : \(A=\frac{19^{30}+15}{19^{31}+15}\)

\(\Rightarrow19A=\frac{19^{31}+285}{19^{31}+15}=\frac{19^{31}+15+270}{19^{31}+15}=1+\frac{270}{19^{31}+15}\)

Lại có \(B=\frac{19^{31}+15}{19^{32}+15}\)

\(\Rightarrow19B=\frac{19^{32}+285}{19^{32}+15}=\frac{19^{32}+15+270}{19^{32}+15}=1+\frac{270}{19^{32}+15}\)

Vì \(\frac{270}{19^{32}+15}< \frac{270}{19^{31}+15}\Rightarrow1+\frac{270}{19^{32}+5}< 1+\frac{270}{19^{31}+15}\Rightarrow19B< 19A\Rightarrow B< A\)

11 tháng 5 2019

#)Giải :

\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)

\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)

\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)

\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)

\(\Rightarrow A=B\)

       #~Will~be~Pens~#

11 tháng 5 2019

A>2018 +1+19/2019 +1+19

A>2018+20/2019+20

A>20(2017+1)/20(2018+1)

A>2017+1/2018+1

=>A>B

Chúc bạn học tốt

13 tháng 3 2020

\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)

\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)

từ (1) and (2)

=>19A>19B

=>A>B

13 tháng 4 2021

Ta có:

\(\dfrac{1}{20^2}< \dfrac{1}{20\cdot19}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\dfrac{1}{21^2}< \dfrac{1}{20\cdot21}=\dfrac{1}{20}-\dfrac{1}{21}\)

\(...\)

\(\dfrac{1}{30^2}< \dfrac{1}{29\cdot30}=\dfrac{1}{29}-\dfrac{1}{30}\)

\(\Rightarrow A< \dfrac{1}{19}-\dfrac{1}{30}< \dfrac{1}{19}\)