Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+8=3\sqrt{x^3+8}\)
\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)
\(x^4+16x^2+64=9x^2+72\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
b)\(\sqrt{3x^2-4x}=2x-3\Leftrightarrow\left(\sqrt{3x^2-4x}\right)^2=\left(2x-3\right)^2\Leftrightarrow3x^2-4x=4x^2-12x+9\Leftrightarrow3x^2-4x^2-4x+12x-9=0\Leftrightarrow-x^2+8x-9=0\Leftrightarrow-\left(x^2-8x+9\right)=0\Leftrightarrow-\left(x^2-2.x.4+16-7\right)=0\Leftrightarrow\left(x-4\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-4=-\sqrt{7}\\x-4=\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4-\sqrt{7}\\x=4+\sqrt{7}\end{matrix}\right.\left(TMĐK\right).VậyS=\left\{4-\sqrt{7};4+\sqrt{7}\right\}.\left(ĐKXĐ:3x^2-4x\ge0\Leftrightarrow x\left(3x-4\right)\ge0\Leftrightarrow x\ge\dfrac{4}{3}\right)\)
Làm nốt :))
\(a.\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\) ( 5 ≤ x ≤ 7 )
⇔ \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left[7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right]}{\sqrt{7-x}+\sqrt{x-5}}=2\)
⇔ \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)
⇔ \(x=5\left(TM\right)orx=7\left(TM\right)\)
KL........
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\) (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )
Khi đó pt :
<=> 7+a =3 + \(\sqrt{5}\)
<=> 4+a = \(\sqrt{5}\)
<=> (4+a)\(^2\) = 5
<=> 16 + 8a + a\(^2\) = 5
<=>a\(^2\) + 8a+ 11 = 0
<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại)
Vậy Pt vô nghiệm.
b) \(\sqrt{3x^2-4x}\) = 2x-3
<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9
<=> x\(^2\)-8x+9 = 0
<=> x=1 , x=9
Vậy S={1;9}
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2
<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)
<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)
<=> x=7,x=5
Vậy x=5 hoặc x=7