K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(\sin \frac{\pi }{6} = \frac{1}{2}\) nên ta có phương trình \(sin2x = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \\2x = \pi  - \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l}b,\,\,sin(x - \frac{\pi }{7}) = sin\frac{{2\pi }}{7}\\ \Leftrightarrow \left[ \begin{array}{l}x - \frac{\pi }{7} = \frac{{2\pi }}{7} + k2\pi \\x - \frac{\pi }{7} = \pi  - \frac{{2\pi }}{7} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\pi }}{7} + k2\pi \\x = \frac{{6\pi }}{7} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}\;c)\;sin4x - cos\left( {x + \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow sin4x = cos\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{2} - x - \frac{\pi }{6}} \right)\\ \Leftrightarrow sin4x = \sin \left( {\frac{\pi }{3} - x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{3} - x + k2\pi \\4x = \pi  - \frac{\pi }{3} + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{15}} + k\frac{{2\pi }}{5}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}a)\;sin2x + cos3x = 0\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) + cos3x = 0\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) =  - cos3x\\ \Leftrightarrow cos\left( {\frac{\pi }{2} - 2x} \right) = cos\left( {\pi  - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - 2x = \pi  - 3x + k2\pi \\\frac{\pi }{2} - 2x =  - \pi  + 3x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{{3\pi }}{{10}} + k\frac{{2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}b)\;sinx.cosx = \frac{{\sqrt 2 }}{4}\\ \Leftrightarrow \frac{1}{2}\;sin2x = \frac{{\sqrt 2 }}{4}\\ \Leftrightarrow sin2x = \frac{{\sqrt 2 }}{2} = sin\left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{4} + k2\pi \\2x = \pi  - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{8} + k\pi \\x = \frac{{3\pi }}{8} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}c)\;sinx + sin2x = 0\\ \Leftrightarrow sinx =  - sin2x\\ \Leftrightarrow sinx = sin( - 2x)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 2x + k2\pi \\x = \pi  + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\frac{{2\pi }}{3}\\x =  - \pi  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)

Vậy phương trình \(cosx =  - 3\;\) vô nghiệm.

\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x =  - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x =  - {15^o} + k{360^o},k \in \mathbb{Z}\).

\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi  \Leftrightarrow x \ne  - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)

Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) =  - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)

\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} =  - \frac{\pi }{4} + k\pi  \Leftrightarrow x =  - \pi  + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x =  - \pi  + k2\pi ,k \in \mathbb{Z}\,\).

b, Điều kiện xác định: \(3x \ne k\pi  \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)

\(\;cot3x =  - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow 3x =  - \frac{\pi }{3} + k\pi  \Leftrightarrow x =  - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x =  - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}a)\;\,cos(x + \frac{\pi }{3}) = \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow cos\left( {x + \frac{\pi }{3}} \right) = cos\frac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = -\frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = -\frac{\pi }{6} + k2\pi \\x = -\frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}b)\;\,cos4x = cos\frac{{5\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{{5\pi }}{{12}} + k2\pi \\4x = -\frac{{5\pi }}{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{48}} + k\frac{\pi }{2}\\x = -\frac{{5\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

\(\begin{array}{l}c)\;\,co{s^2}x = 1\\ \Leftrightarrow \left[ \begin{array}{l}cosx = 1\\cosx = -1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \pi  + k2\pi \end{array} \right. \Leftrightarrow x = k\pi ,k \in \mathbb{Z}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,x-1=0\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

\(b,x^2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

c, ĐK: \(x\ge\dfrac{\sqrt{2}}{2}\)

\(\sqrt{2x^2-1}=x\Leftrightarrow2x^2-1=x^2\Leftrightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

Từ đó, hai phương trình b và c có cùng tập nghiệm.

 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Sử dụng máy tính cầm tay ta có: \(cos1,16 \approx 0,4\)nên \(cosx = cos1,16\) do đó các nghiệm của phương trình là \(x = 1,16 + k2\pi \) hoặc \(x = -1,16 + k2\pi \)với \(k\; \in \;\mathbb{Z}\).

Vậy tập nghiệm của phương trình là \(S = \{ 1,16 + k2\pi ;-1,16 + k2\pi ,k\; \in \;\mathbb{Z}\} \).

b) Sử dụng máy tính cầm tay ta có: \(tanx{\rm{ }} = \;\sqrt 3 \) nên \(tanx = \;tan\frac{\pi }{3} \Leftrightarrow x = \;\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là \(S = \;\left\{ {\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}} \right\}.\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(cotx = 1\)nên phương trình \(cotx = 1\) có các nghiệm là \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).

\(\begin{array}{*{20}{l}}{b){\rm{ }}cot\left( {3x + 30^\circ } \right) = cot75^\circ }\\{ \Leftrightarrow \;3x + 30^\circ  = 75^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = 45^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}.}\\{ \Leftrightarrow \;x = 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Điều kiện xác định là: \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm \(x = k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là: \(S = \{ k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{*{20}{l}}{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ }\\{ \Leftrightarrow \;tan\left( {3x-30^\circ } \right) = tan\left( {-{\rm{ }}75^\circ } \right)}\\{ \Leftrightarrow \;3x-30^\circ  = -75^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = -\,45^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;x = -15^\circ  + k120^\circ ,k\; \in \;\mathbb{Z}.}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ -15^\circ  + k120^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{l}{\rm{c, cos}}\left( {x + \frac{\pi }{{12}}} \right) = {\rm{cos}}\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi \\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\)