K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

em moi hoc lop 7 thoi a doi xong ki 2 nha

10 tháng 2 2016

em mới học lớp 7 thôi

11 tháng 2 2016

\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1972}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\frac{x^2-10x-29}{1971}-1+\frac{x^2-10x-27}{1973}-1=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\frac{x^2-10x-29-1971}{1971}+\frac{x^2-10x-27-1973}{1973}=\frac{x^2-10x-1971-29}{29}+\frac{x^2-10x-1973-27}{27}\)

\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}-\frac{x^2-10x-2000}{29}-\frac{x^2-10x-2000}{27}=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)

\(\Leftrightarrow x^2-10x-2000=0\)

\(\Leftrightarrow x^2-50x+40x-2000=0\)

\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)

\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)

         Th1:   \(x-50=0\Leftrightarrow x=50\)

        Th2:  \(x+40=0\Leftrightarrow x=-40\)

Vậy tập nghiệm của phương trình là    \(S=\left\{50;-40\right\}\)

11 tháng 2 2016

hơi mất thời gian để chiều tôi làm cho

a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)

nên \(x^2-10x-2000=0\)

\(\Leftrightarrow x^2+40x-50x-2000=0\)

\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)

\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

Vậy: S={-40;50}

21 tháng 2 2020

\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\Rightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

Giải rõ hơn nha

21 tháng 2 2020

\(\Leftrightarrow\frac{x^2-10x-29}{1971}+1+\frac{x^2-10x-27}{1973}+1-\frac{x^2-10x-1971}{29}-1-\frac{x^2-10x-1973}{27}-1=0\)

sai dấu r

4 tháng 2 2017

Thêm (-1) vào từng số hạng=> tử số các số hạng là:  \(\left(x^2-10x-2000\right)\)

\(\Leftrightarrow x^2-10x-2000=0\Leftrightarrow\left(x-5\right)^2=2025=45^2\)

\(\orbr{\begin{cases}x=50\\x=-40\end{cases}}\)

17 tháng 2 2020

a)\(\frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{95}+1=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\Rightarrow300-x=0\Rightarrow x=300\)

b)\(\frac{2-x}{2002}+1=\frac{1-x}{2003}+2-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{1-x}{2003}+1+1-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}+\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow2004-x=0\Rightarrow x=2004\)

c)\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}-2=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-2\)

\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}=\frac{x^2-10x-2000}{29}+\frac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)

\(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\ne0\)

\(\Rightarrow x^2-10x-2000=0\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

10 tháng 2 2018

Các câu na ná chắc nên mk làm mẫu 2 bài thui nha !

a, pt <=> x-23/24 + x-23/25 - x-23/26 - x-23/27 = 0

<=> (x-23).(1/24+1/25-1/26-1/27) = 0

<=> x-23=0 ( vì 1/24+1/25-1/26-1/27 > 0 )

<=> x=23

b, pt <=> (201-x/99 + 1)+(203-x/97 + 1)+(205-x/95 + 1) = 0

<=> 300-x/99 + 300-x/97 + 300-x/95 = 0

<=> (300-x).(1/99+1/97+1/95) = 0

<=> 300-x = 0 ( vì 1/99+1/97+1/95 > 0 )

<=> x=300

Tk mk nha

sory mình học lớp 7

17 tháng 4 2017

Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\left(\dfrac{x^2-10x-27}{1973}-1\right)+\left(\dfrac{x^2-10x-29}{1971}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1973}+\dfrac{x^2-10x-2000}{1971}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)=0\)\(\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)\ne0\)

\(\Leftrightarrow x^2-50x+40x-2000=0\)

\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)

\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-50=0\\x+40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)

Vậy: Giá trị x thỏa mãn là: \(x=-40;50\)

17 tháng 4 2017

\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

\(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)

Nên \(x^2-10x-2000=0\)

<=> \(x^2-50x+40x-2000=0\)

<=> \(x\left(x-50\right)+40\left(x-50\right)=0\)

<=> \(\left(x-50\right)\left(x+40\right)=0\)

<=> \(x=50\) hoặc \(x=-40\)

Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)

25 tháng 5 2021

`(x^2-10x-29)/1971+(x^2-10x-27)/1973=(x^2-10x-1971)/1929+(x^2-10x-1973)/1927`

`<=>(x^2-10x-29)/1971-1+(x^2-10x-27)/1973-1=(x^2-10x-1971)/1929-1+(x^2-10x-1973)/1927-1`

`<=>(x^2-10x-200)/1971+(x^2-10x-200)/1973=(x^2-10x-200)/1971+(x^2-10x-200)/1927`

`<=>(x^2-10x-200)(1/1971+1/1973-1/1929-1/1927)=0`

`<=>x^2-10x-200=0` do `1/1971+1/1973-1/1929-1/1927<0`

`<=>x^2-20x+10x-200=0`

`<=>x(x-20)+10(x-20)=0`

`<=>(x-20)(x+10)=0`

`<=>` \(\left[ \begin{array}{l}x=20\\x=-10\end{array} \right.\) 

Vậy `S={20,-10}`