K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

a) 2x + 1 = 15 - 5x

<=> 2x + 5x = 15 - 1 

<=> 7x         = 14

<=>   x         = 2

Vậy phương trình có nghiệm duy nhất là x = 2 

b) 3x - 2 = 2x + 5

<=> 3x - 2x = 5 + 2

<=> x          = 7 

Vậy phương trình có nghiệm duy nhất là x = 7 

c) x ( 2x + 1 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

Vậy _______

d) 7 ( x - 2 ) = 5 ( 3x + 1 )

<=> 7x - 14 = 15x + 5

<=> 7x - 15x = 5 + 14

<=> -8x         = 19

<=> \(x=-\frac{19}{8}\)

Vậy ______

5 tháng 4 2021

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

5 tháng 4 2021

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

18 tháng 4 2022

a) \(5x-3=7\)

\(\Leftrightarrow5x=7+3\)

\(\Leftrightarrow5x=10\)

\(\Leftrightarrow x=\dfrac{10}{5}\)

\(\Leftrightarrow x=2\)

Vậy \(S=\left\{2\right\}\)

b) \(\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow x+3=0\) hoặc \(x-4=0\)

*) \(x+3=0\)

\(x=0-3\)

\(x=-3\)

*) \(x-4=0\)

\(x=0+4\)

\(x=4\)

Vậy \(S=\left\{-3;4\right\}\)

c) \(\left|x^2+2014\right|=1\)

\(\Leftrightarrow x^2+2014=1\) hoặc \(x^2+2014=-1\)

*) \(x^2+2014=1\)

\(\Leftrightarrow x^2=1-2014\)

\(\Leftrightarrow x^2=-2013\) (vô lý)

*) \(x^2+2014=-1\)

\(\Leftrightarrow x^2=-1-2014\)

\(\Leftrightarrow x^2=-2015\) (vô lý)

Vậy \(S=\varnothing\)

d) \(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\) (1)

ĐKXĐ: \(x\ne-1;x\ne3\)

\(\left(1\right)\Leftrightarrow2\left(x-3\right)-\left(x+1\right)=3x-11\)

\(\Leftrightarrow2x-6-x-1=3x-11\)

\(\Leftrightarrow-2x=-11+7\)

\(\Leftrightarrow-2x=-4\)

\(\Leftrightarrow x=2\) (nhận)

Vậy \(S=\left\{2\right\}\)

13 tháng 2 2020

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

13 tháng 2 2020

Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)

5 tháng 5 2018

a) x + 3 = 0

\(\Leftrightarrow x=-3\)

Vậy phương trình có tập nghiệm  \(S=\left\{-3\right\}\)

b) 2x - 1 = 0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm  \(S=\left\{\frac{1}{2}\right\}\)

c) x - 1 = 5x - 3

\(\Leftrightarrow x-5x=-3+1\)

\(\Leftrightarrow-4x=-2\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm  \(S=\left\{\frac{1}{2}\right\}\)

5 tháng 5 2018

Vậy còn câu d..e..f giải sao ad

20 tháng 6 2017

a) 2x-(3x-5x)=4(x+3) 

2x - 3x + 5x = 4x +12

4x = 4x + 12

0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)

b) 5(x-3)-4=2(x-1)+7

5x-15 - 4 = 2x-2 + 7

5x-19 = 2x+5

5x-2x = 5+19

3x = 24

x= 8

c) 4(x+3)=-7X+17

4x +12 = -7x + 17

4x+7x = 17-12

11x = 5

x = 5/11

20 tháng 6 2017

  1)      2x - (3x -5x) = 4(x+3)

\(\Leftrightarrow\)2x +2x = 4x +12

\(\Leftrightarrow\)4x = 4x +12

\(\Leftrightarrow\)0x = 12

Vậy phương trình đã cho vô nghiệm
2)        5(x-3) - 4 = 2(x-1) +7

\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7

\(\Leftrightarrow\)    5x - 1   = 2x +5

\(\Leftrightarrow\)    5x - 2x = 5 +1

\(\Leftrightarrow\)        3x   =   6

\(\Leftrightarrow\)         x    =   2

Vậy tập nghiệm của phương trình là S= {2}

 3)      4(x + 3) = -7x + 17

\(\Leftrightarrow\)4x + 12 = -7x +17

\(\Leftrightarrow\)4x + 7x = 17 - 12

\(\Leftrightarrow\)   11x    =     5

\(\Leftrightarrow\)     x     =    \(\frac{5}{11}\)

Vậy tập nghiệm của phương trình là S={   \(\frac{5}{11}\)}

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

5 tháng 6 2019

anh giải dùm em bài (3x-1)(x+3)=(2-x)(5-3x)

13 tháng 2 2022

\(\left(dk:x\ne-\dfrac{2}{3};x\ne-1\right)pt\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{7x-3x^2-5x-2}{3x^2+5x+2}=0\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{3x^2+12x+2}{3x^2+5x+2}=0\left(1\right)\)

\(x=0\) \(không\) \(là\) \(nghiệm\left(1\right)\)

\(x\ne0\Rightarrow\left(1\right)\Leftrightarrow\dfrac{2}{3x-1+\dfrac{2}{x}}-\dfrac{3x+12+\dfrac{2}{x}}{3x+5+\dfrac{2}{x}}=0\)

\(đặt:3x+\dfrac{2}{x}=t\) \(do:x\ne-\dfrac{2}{3};x\ne-1;\Rightarrow t\ne-5\)

\(x>0\Rightarrow t\ge2\sqrt{3.2}=2\sqrt{6}\)

\(x< 0\Rightarrow-t\ge2\sqrt{6}\Rightarrow t\le-2\sqrt{6}\Rightarrow\left[{}\begin{matrix}t\ne-5;t\le-2\sqrt{6}\\t\ge2\sqrt{6}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{t-1}-\dfrac{t+12}{t+5}=0\Rightarrow2\left(t+5\right)-\left(t+12\right)\left(t-1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-11\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)

\(t=-11=3x+\dfrac{2}{x}\Leftrightarrow3x^2+2=-11x\Leftrightarrow3x^2+11x+2=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{97}}{6}\left(tm\right)\\x=\dfrac{-11-\sqrt{97}}{6}\left(tm\right)\end{matrix}\right.\)

13 tháng 2 2022

bài nó dàiiiiiiii , khôg hiểu chỗ nèo hỏi lại mình hen

\(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)

\(\Leftrightarrow\left(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{\left(3x+2\right)\left(x+1\right)}\right)=1\)

\(\Leftrightarrow\dfrac{2x\left(3x+2\right)\left(x+1\right)-\left(7x.\left(3x^2-x+2\right)\right)}{\left(3x^2-x+2\right).\left(3x+2\right)\left(x+1\right)}=\dfrac{-15x^3+17x^2-10x}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}\)

 

\(\Leftrightarrow\dfrac{-15x^3+17^2-10x }{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}-1=0\)

rồi quy đồng tùm lum từa lưa nữa được như này:

\(\Leftrightarrow\dfrac{-9x^4-27x^3+10x^2-18x-4}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}=0\)

\(\Leftrightarrow-9x^4-27x^3+10x^2-18x-4=0\)

\(\Leftrightarrow x^2+\dfrac{5}{3}.x+\dfrac{25}{26}=0\)

\(\Leftrightarrow x+\left(\dfrac{5}{6}\right)^2=\dfrac{1}{36}\)

Sử dụng công thức bậc 2 hen:

\(\Leftrightarrow x=\dfrac{-5\pm\sqrt{1}}{6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{1}}{6}\\x_2=\dfrac{-5-\sqrt{1}}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{2}{3}\\x_2=-1\end{matrix}\right.\)