K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Lần sau bạn ghi đúng lớp với ạ!

1/ Đặt: \(\sqrt[3]{x+1}=a;\sqrt[3]{x+3}=b\Rightarrow\sqrt[3]{x+2}=\sqrt[3]{\frac{a^3+b^3}{2}}\)

Thay vào ta có: \(a+b+\sqrt[3]{\frac{a^3+b^3}{2}}=0\)

<=> \(a+b=-\sqrt[3]{\frac{a^3+b^3}{2}}\)

<=> \(a^3+b^3+3a^2b+3ab^2=-\frac{a^3+b^3}{2}\)

<=> \(a^3+b^3+2a^2b+2ab^2=0\)

<=> \(\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)=0\)

<=> \(\orbr{\begin{cases}a+b=0\\a^2+ab+b^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\end{cases}}\)

Với a = -b ta có: \(\sqrt[3]{x+1}=-\sqrt[3]{x+3}\)

<=> x + 1 = - x - 3 <=> 2x = - 4 <=> x = - 2

Với \(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2=b^2=0\)

<=> a = b = 0 <=> \(\sqrt[3]{x+1}=\sqrt[3]{x+3}=0\) vô lí 

Vậy x = -2 là nghiệm 

5 tháng 8 2020

Lần sau ghi đúng lớp! 

Ta có: \(\left(ax+b\right)^3+\left(bx+a\right)^3=\left(ax+b+bx+a\right)^3-3\left(ax+b\right)\left(bx+a\right)\left(ax+b+bx+a\right)\)

\(=\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)\)

Phương trình ban đầu :

<=> \(\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=\left(a+b\right)^3\left(x+1\right)^3\)

<=> \(\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=0\)(1) 

TH1) Với a = 0; (1) <=> \(b\left(bx\right)b\left(x+1\right)=0\Leftrightarrow b^3x\left(x+1\right)=0\) (2) 

  • b= 0 ; (2) <=> 0 = 0 luôn đúng  => phương trình (2) có vô số nghiệm => phương trình ban đầu có vô số nghiệm 
  • b khác 0 ; (2) <=> x ( x + 1) = 0 <=> x = 0 hoặc x = -1  => Phương trình ban đầu có 2 nghiệm  x = 0 hoặc x = -1 

TH2: Với a khác 0 

  • b = 0 ; (1) <=> \(a^3x\left(x+1\right)=0\Leftrightarrow x\left(x+1\right)=0\)<=> x = 0 hoặc x = - 1

=> phương trình ban đầu có 2 nghiệm x = 0 hoặc x = -1 

  • b khác 0 ; (1) <=> \(\left(ax+b\right)\left(bx+a\right)\left(x+1\right)=0\)

<=> x = -b/a hoặc x = -a/b hoặc x = - 1

=> Phương trình ban đầu có 3 nghiệm 

Kết luận:...