Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+2}-\sqrt{x-6}>2\)(ĐK: x\(\ge\)6)
\(\Leftrightarrow\sqrt{x+2}>2+\sqrt{x-6}\)
\(\Leftrightarrow x+2>4+4\sqrt{x-6}+x-6\)
\(\Leftrightarrow4>4\sqrt{x-6}\)
<=>\(1>\sqrt{x-6}\)
<=>1>x-6
<=>x<7 Mà x\(\ge\)6 =>x=6
√(2x²+8x+6) + √(x²-1) = 2(x+1) TXĐ: x € (-∞;-3] U [1;+∞) U {-1}
Từ pt => x≥ -1. Kết hợp với TXĐ đc: x ≥1 hoặc x = -1
Bình phương 2 vế:
2√[2(x²-1)(x²+4x+3)] = x²-1
Từ đây suy ra x² ≥ 1, lại bình phương 2 vế tiếp:
8(x²-1)(x²+4x+3) = x^4 - 2x²+1
<=> 7x^4 + 32x³ + 18x² -32x -25 = 0
<=> 7x^4 - 7x² + 32x³ - 32x +25x² - 25 = 0
<=> 7x²(x²-1) + 32x(x²-1) +25(x²-1) = 0
<=> (x²-1)(7x²+32x+25) = 0
<=> (x²-1)(x+1)(7x+25) = 0
<=> x = ±1 (x = -25/7 loại)
hình như bạn hiểu sai đề rồi. viết lại cho rõ nhé:(8x-6)căn (x-1)=(2+căn (x-2))(x+4 căn(x-2)+3)
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy