Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)
\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)
\(\Leftrightarrow-2x^2+8x-8=0\)
\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow-2\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy nghiệm của phương trình là: {2}
2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)
Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)
3) \(\left|x-1\right|=x^2-x\)
\(\Leftrightarrow x-1=x^2-x\)
\(\Leftrightarrow1=x^2-x-x\)
\(\Leftrightarrow1=x^2\)
\(\Leftrightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy nghiệm phương trình là: {1; -1}
4) \(\left|x^2-3x+1\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)
Xét trường hợp này rồi làm tiếp, dễ rồi :))
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa
b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
nên căn luôn có nghĩa
c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)
h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)
i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: x>-4
h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
|x - 2|+ |x - 3| = 4
Th1: x - 2 + x - 3 = 4
-5 = 4 (vô lí)
Th2: -(x - 2) + [-(x-3)] = 4
-x + 2 + (-x) + 3 =4
-2x + 5 = 4
-2x = -1
x = 1/2
Vậy x = 1/2
a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)
b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)
a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)
\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)
b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)
thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)