\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)va x-2y+3z=-10

vậy x+y+z = ?

 <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

e, Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14-6}{8}=1\)

Do đó: \(\frac{x-1}{2}=1\Rightarrow x=2.1+1=3\)

\(\frac{2y-4}{6}=1\Rightarrow y=\frac{6.1+4}{2}=5\)

\(\frac{3z-9}{12}=1\Rightarrow z=\frac{12.1+9}{3}=7\)

Vậy x=3; y=5; z=7

h, Ta có: \(\frac{x}{2}=\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{x.y}{2.3}=\frac{54}{6}=9\)

Do đó: \(\frac{x^2}{4}=9\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)

\(\frac{y^2}{9}=9\Rightarrow y^2=9.9=81\Rightarrow y=9;y=-9\)

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.

17 tháng 12 2016

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)

Mà x-2y+3z=-10

Hay 2k+1-2(3k+2)+3(4k+3)=-10

2k+1-6k-4+12k+9=-10

(2k-6k+12k)+(1-4+9)=-10

8k+6=-10

8k=-16

k=-2

\(\Rightarrow x=-2\cdot2+1=-3,y=-2\cdot3+2=-4,z=-2\cdot4+3=-5\)

 

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

29 tháng 12 2016

a)

\(2x=3y\Rightarrow y=\frac{2x}{3}\)

\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)

(x,y,z)=(15/7,10/7,6/7)

(x,y,z)=(-15/7,-10/7,-6/7)

3 tháng 10 2017

Áp dụng t/c dãy tỉ số bằng nhau: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5

15 tháng 1 2019

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2

\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)

Vậy x=-3; y=-4; z=-9

Vậy x=-3;y=-4;z=-9

18 tháng 7 2019

a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7

Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)

Mà \(\frac{y}{4}=\frac{z}{5}\)nên  \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)

Từ \(\frac{x}{2}=1=>x=2\)

Từ\(\frac{y}{4}=1=>y=4\)

Từ \(\frac{z}{5}=1=>z=5\)

 \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

18 tháng 7 2019

Cam on