Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)\(\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2\left(y-2\right)}{6}=\dfrac{3\left(z-3\right)}{12}\)
Suy ra: \(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\left(x-1\right)}{2}=\dfrac{\left(2y-4\right)}{6}=\dfrac{\left(3z-9\right)}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{\left(x-2y+3z\right)+\left(4-1-9\right)}{8}\)
\(=\dfrac{-10-6}{8}=\dfrac{-16}{8}=2\)
Suy ra:
\(\left\{{}\begin{matrix}x=2.2+1=5\\y=2.3+2=8\\z=2.4+3=11\end{matrix}\right.\)
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)
Mà x-2y+3z=-10
Hay 2k+1-2(3k+2)+3(4k+3)=-10
2k+1-6k-4+12k+9=-10
(2k-6k+12k)+(1-4+9)=-10
8k+6=-10
8k=-16
k=-2
\(\Rightarrow x=-2\cdot2+1=-3,y=-2\cdot3+2=-4,z=-2\cdot4+3=-5\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=>\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(z-3\right)}{12}=>\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó: \(\frac{x-1}{2}=1=>x-1=2=>x=3\)
\(\frac{y-2}{3}=1=>y-2=3=>y=5\)
\(\frac{z-3}{4}=1=>z-3=4=>z=7\)
Vậy x=3;y=5;z=7
Biêt x, y , z thoả mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = 10. Tìm x,y,z.
Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k
thay vào cái thứ 2 rồi rút gọn tính dc k;
thay ngược lại tìm x;y;z
=>(x-1)/2=(-2y+4)/-6=(3z-9)/12
=(x-1-2y+4+3z-9)/(2-6+12)
=-16/8=-2
=> (x-1)/2=-2<=>x-1=-4<=>x=-3
=>(y-2)/3=-2<=>y-2=-6<=>y=-4
=>(z-3)/4=-2<=>z-3=-8<=>z=-5
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2
\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)
Vậy x=-3; y=-4; z=-9
Vậy x=-3;y=-4;z=-9