Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngữ văn ko phải toán ko giải dc với đây là toán lớp 6 nha
cho \(x^2+y^2=4\)
tìm giá trị nhỏ nhất \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)2\)
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
\(=x^2+y^2+\frac{2x}{y}+\frac{2y}{x}+\frac{1}{x^2}+\frac{1}{y^2}\)
\(=4+\frac{2x^2+2y^2}{xy}+\frac{x^2+y^2}{x^2y^2}\)
\(=4+\frac{8}{xy}+\frac{4}{x^2y^2}\)
\(=\left(2+\frac{2}{xy}\right)^2\ge0\)
vậy giá trị nhỏ nhất của A là 0.
Nếu phải tìm dấu bằng thì ta rút y theo x rồi thay vào pt đầu ra đc 2 nghiệm x1,x2
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
tự giải ak
Có người nhờ giải ấy @gunny :33