K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(a,A=\left(1;2\right)\Leftrightarrow x=1;y=2\\ \Leftrightarrow2=\left(m+1\right)-2m+3\\ \Leftrightarrow-m+4=2\Leftrightarrow m=2\)

\(c,\)Giả sử điểm cố định là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m+1\right)x_0-2m+3\\ \Leftrightarrow y_0=mx_0+x_0-2m+3\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-y_0+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\Leftrightarrow B\left(2;5\right)\)

Vậy \(\left(d\right)\) luôn đi qua điểm \(B\left(2;5\right)\) cố định

\(d,\) Pt hoành độ giao điểm:

\(2=\left(2+1\right)x-2\cdot2+3\\ \Leftrightarrow2=3x-1\Leftrightarrow x=1\\ \Leftrightarrow C\left(1;2\right)\)

Vậy ...