Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(16x^2+8xy+y^2=\left(4x+y\right)^2\)
b) \(4x^2-2xy+\dfrac{1}{4}y^2=\left(2x-\dfrac{1}{2}y\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
d) \(9x^2-6xy+y^2=\left(3x-y\right)^2\)
a)\(x^2+2x+1=x^2+2x1+1^2=\left(x+1\right)^2\)
b)\(9x^2+y^2+6xy=3^2x^2+y^2+2.3x.y=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
c)\(25a^2+4b^2-20ab=5^2a^2+2^2b^2-2.5a.2b=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
d)\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
Câu d thì biểu thức là \(\frac{x^2-1}{2x+\frac{1}{10}}\) hay là \(\frac{x^2-1}{\frac{2x+1}{10}}\) z bạn???
a) Dễ dàng nhận thấy đây là hằng đẳng thức (1) với
A = x ;
2.AB = 6xy ⇒ B = 3y.
Vậy ta có hằng đẳng thức:
x2 + 2.x.3y + (3y)2 = (x + 3y)2
hay x2 + 6xy + 9y2 = (x + 3y)2
b) Nhận thấy đây là hằng đẳng thức (2) với :
B2 = 25y2 = (5y)2 ⇒ B = 5y
2.AB = 10xy = 2.x.5y ⇒ A = x.
Vậy ta có hằng đẳng thức : x2 – 10xy + 25y2 = (x – 5y)2
c) Đề bài tương tự:
4x2 + 4xy + ... = (... + y2)
... – 8xy + y2 = ( ...– ...)2
`a)x^2+20x+100=(x+10)^2`
`b)16x^2+24xy+9y^2=(4x+3y)^2`
`c)y^2-14y+49=(y-7)^2`
`d)9x^2-42xy+49y^2=(3x-7y)^2`
a, \(x^2+2x.10+100=\left(x+10\right)^2\)
\(b,16x^2+2.4x.3y+9y^2=\left(4x+3y\right)^2\)
\(c,y^2-14y+49=\left(y-7\right)^2\)
\(d,9x^2-2.3x.7x+49y^2=\left(3x-7y\right)^2\)