K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{13\cdot15}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{4}{15}=\dfrac{2}{15}\)

6 tháng 4 2022

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{5}{15}-\dfrac{1}{15}=\dfrac{4}{15}\)

23 tháng 8 2023

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)

24 tháng 8 2023

Thanks

16 tháng 2 2022

1100444-88888=

a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(\frac{10}{22}\)

2:

\(B=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

NA
Ngoc Anh Thai
Giáo viên
8 tháng 5 2021

\(A=\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\\ =\dfrac{2}{4}.\left(\dfrac{1}{3}-\dfrac{1}{n+4}\right)\\ =\dfrac{1}{2}.\dfrac{n+1}{3\left(n+4\right)}=\dfrac{n+1}{6\left(n+4\right)}\\ =\dfrac{n+4-3}{6\left(n+4\right)}=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}< \dfrac{1}{6}.\)

 

Giải:

A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)

A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)

A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)

A=1/2.(1/3-1/n+4)

A=1/6-1/2.(n+4)

⇒A>1/6

Chúc bạn học tốt!

12 tháng 5 2018

1.tính nhanh:

Ta có: (chép đầu bàihaha)

=\(\dfrac{3}{1.7}\)+\(\dfrac{5}{7.3}\)+\(\dfrac{7}{3.19}\)+\(\dfrac{9}{19.7}\)

=(\(\dfrac{3}{4.7}\)+\(\dfrac{5}{7.12}\)+\(\dfrac{7}{12.19}\)+\(\dfrac{9}{19.28}\)).4

=(\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{12}\)+\(\dfrac{1}{12}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{28}\)).4

=(\(\dfrac{1}{4}\)-\(\dfrac{1}{28}\)).4

=1-\(\dfrac{1}{7}\)

= \(\dfrac{6}{7}\)

2.so sánh

Ta có:1-\(\dfrac{3}{4}\)=\(\dfrac{1}{4}\) ; 1-\(\dfrac{5}{6}\)=\(\dfrac{1}{6}\) ; 1-\(\dfrac{7}{10}\)=\(\dfrac{3}{10}\)

(quy đồng rồi so sánh ba hiệu trên,hiệu nào nhỏ thì phân số bị trừ lớn và ngược lai.Đến đây bạn tự làm hộ mk nhé!vui)

2 tháng 8 2018

\(B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{99.101}\)

\(B=2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)

\(B=\dfrac{2}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}\right)\)

\(B=1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(B=1.\left(1-\dfrac{1}{101}\right)\)

\(B=1.\dfrac{100}{101}\)

\(B=\dfrac{100}{101}\)

cảm mơn bn

bn giúp mình pB nha