Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em gửi bài qua fb của thầy thầy HD nhé: tìm fb của thầy bằng sđt:0975705122 nhé
Câu 1:
\(-\frac{1}{54}-\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{79.81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{79}-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{40}{27}\)
\(=-\frac{3}{2}\)
Câu 2:
\(a^2+b^2+c^2+d^2+e^2=\left(a+b+c+d+e\right)^2-2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)\)
Mà \(2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)⋮2\)
\(\Rightarrow\left(a+b+c+d+e\right)^2⋮2\)
\(\Rightarrow a+b+c+d+e⋮2\)
Do \(a,b,c,d,e\) nguyên dương \(\Rightarrow a+b+c+d+e>2\Rightarrow a+b+c+d+e\) là hợp số
Câu 3:
- Chiều thuận: \(3a+2b⋮17\Rightarrow10a+b⋮17\)
Ta có \(\left\{{}\begin{matrix}17a⋮17\\3a+2b⋮17\end{matrix}\right.\) \(\Rightarrow17a+3a+2b⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\), mà 2 và 17 nguyên tố cùng nhau \(\Rightarrow10a+b⋮17\)
- Chiều nghịch: \(10a+b⋮17\Rightarrow3a+2b⋮17\)
\(10a+b⋮17\Rightarrow2\left(10a+b\right)⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
Mà \(17a⋮17\Rightarrow3a+2b⋮17\) (đpcm)
\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)
\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)
\(x.\frac{1}{3}=\frac{50}{101}\)
$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$
\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)
\(\frac{1}{3}xx=\frac{50}{101}\)
\(x.x=\frac{150}{101}\)
còn lại tự tính
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{50}{101}\)
b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)
\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)
=1/2x(1/1.3+1/3.5+...+1/99.101)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)
=1/2.(1-1/101)
=1/2.100/101
=50/101
chúc bạn học tốt
Đặt tên bthuc là A
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=1-\frac{1}{21}=\frac{20}{21}\)
=>\(A=\frac{20}{21}:2=\frac{10}{21}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{19}\right)=\frac{1}{2}.\left(\frac{18}{19}\right)\)
\(=\frac{9}{19}\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
Bài làm
D=ko viết lại đề
=1/1.3+1/1.5+1/5.7+1/7.9-1/2.4-1/4.6-1/6.8-1/8.10
=1+1/9-1-1/10
=10/9-9/10
=19/90
=(1/1.3+...+1/7.9)-(1/2.4+...+1/8.10)
=2(1/1.3+...+1/7.9)-2(1/2.4+...+1/8.10)
=(2/1.3+...+2/7.9)-(2/2.4+...+2/8.10)
=(1-1/3+...+1/7-1/9)-(1/2-1/4+ +1/8-1/10)
=1-1/9-1/2+1/10
tự tính tiếp nhé
gọi biểu thức là A
ta có :
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}...\frac{1}{19.21}\)
=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}...\frac{2}{19.21}\)
2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{21}\)
2A = 1 - \(\frac{1}{21}\)
2A = \(\frac{20}{21}\)
A = \(\frac{20}{21}:2=\frac{10}{21}\)
D = \(\frac{1}{54}-\frac{3}{1.3}-\frac{3}{3.5}-\frac{3}{5.7}-...-\frac{1}{79.81}\)
\(=\frac{1}{54}-\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{79.81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{79.81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{79}-\frac{1}{81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\left(1-\frac{1}{81}\right)\)
\(=\frac{1}{54}-\frac{3}{2}.\frac{80}{81}\)
\(=\frac{1}{54}-\frac{40}{27}\)
\(=\frac{1}{54}-\frac{80}{54}\)
\(=\frac{79}{54}\)