\(\frac{1}{3}x.x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

T...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}\)

\(A=\frac{100}{101}:2=\frac{50}{101}\)

\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)

\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)

\(x.\frac{1}{3}=\frac{50}{101}\)

$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$

27 tháng 7 2016

\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)

\(\frac{1}{3}xx=\frac{50}{101}\)

\(x.x=\frac{150}{101}\)

còn lại tự tính

14 tháng 8 2017

X+(1/1.3+1/3.5+1/5.7+...+1/99.101)=100

X+(2/1.3+2/3.5+2/5.7+...+2/99.101)=100

X+(1 -1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)=100

X+(1-1/101)=100

X+100/101=100

X=100-100/101

X=10000/101

10 tháng 9 2019

\(S=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

8 tháng 5 2017

Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(A=\frac{50}{101}\)

b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)

\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)

8 tháng 5 2017

=1/2x(1/1.3+1/3.5+...+1/99.101)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

=1/2.(1-1/101)

=1/2.100/101

=50/101

chúc bạn học tốt

20 tháng 7 2021

ĐK : 51x \(\ge0\Rightarrow x\ge0\)

Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)

Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)

<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)

<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)

<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)

Vậy x = 50/101 

29 tháng 12 2016

A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)

\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)

\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)

X=16

12 tháng 4 2017

17 - 1= 16

= > x = 16

 tk mình nha

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

11 tháng 12 2018

tớ làm câu b thôi, câu a nhân 1/2 lên là đc 

\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)

p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)