Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi trường đề thi khác nhau,kiểu sách khác nhau,nếu bạn muốn dc điểm cao thì bạn mở vở của bạn ra ôn.
1 số điểm kt học kì 2 môn toán của một số hs đc ghi lại như sau
9 | 3 | 5 | 7 | 3 | 9 | 7 | 8 | 10 | 9 |
7 | 5 | 9 | 3 | 6 | 6 | 8 | 9 | 10 | 4 |
a,lập bảng tần số
b,tính số trung bình cộng
2 tính giá trị của biểu thức x^2-2x tại x=-1 và tại x=1
3,cho p(x)=4x^2-4+3x^3+2x+x^5 vàQ(x)=3x-2x^3+4-x^4+x^5
a,sắp xếp
b,tính p(x)+Q(x)
3 tìm nghiệm của đa thức p(x)=2x-4
5,cho tam giác ABC vuông tại A;BD là tia phân giác góc B(Dthuộc AC).kẻ DE vuông góc với BC(Ethuộc BC).cm rằng:
a,tam giác ABD=tam giác EBD
b,DF=DC
c,AD<DC
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
T.I.C.K nha
ở chỗ mk chưa thi. mà nếu thi rồi thì đâu có nhớ đề để cho bạn xem
mik có này chiều nay mik đưa cho bn
http://tin.tuyensinh247.com/de-thi-ki-2-lop-7-mon-toan-thcs-tt-ky-son-2018-c30a38214.html