Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ủa m tưởng tới đây thì là dễ rồi chứ
Ta có
\(B=\frac{A}{1000}=3x+5\sqrt{x^2-8x+17}\)
\(\Leftrightarrow B-3x=5\sqrt{x^2-8x+17}\)
\(\Leftrightarrow B^2-6Bx+9x^2=25\left(x^2-8x+17\right)\)
\(\Leftrightarrow16x^2+\left(6B-200\right)x-B^2+425=0\)
Để pt nào có nghiệm thì
\(\Delta'=\left(3B-100\right)^2-16\left(425-B^2\right)\ge0\)
\(\Leftrightarrow B^2-24B+128\ge0\)
\(\Leftrightarrow\left(B-12\right)^2-16\ge0\)
\(\Leftrightarrow\left(B-12\right)^2\ge16\)
\(\Leftrightarrow B-12\ge4\Leftrightarrow B\ge16\)
B đạt giá trị lớn nhất là 16 khi phương trình này có nghiệm kép hay
x = 3,25
hình vẽ minh họa đây nha các bạn ( thầy giáo mk gợi ý kq là 3.25 km ) . bạn nào giỏi bất đẳng thức giúp mk vói .. cảm ơn
a, Kẻ OH \(\perp\)AB
=> OH là đường trung tuyến
=> \(AH=\frac{AB}{2}=\frac{24}{2}=12\)cm
Theo định lí Pytago tam giác OHA vuông tại H
\(OH=\sqrt{AO^2-AH^2}=5\)cm
Độ cao của máy bay là CD, độ dài AB = 80m
Gọi BC = x (x > 0) => AC = 80 + x
Xét tam giác BDC vuông tại C có CD = x . tan 55 0
Xét tam giác ADC vuông tại C có CD = (80 + x). tan 44 0
Suy ra x . tan 55 0 = (80 + x). tan 44 0
=> x ≈ 113,96m
=> CD = 113,96. tan 55 0 ≈ 162,75m
Vậy độ cao của máy bay so với mặt đất là 162,75m
lAB=8050,96(km)
=>3,14*R*72/180=8050,96
=>R=6410(m)
=>OA=6410(m)
AC=6410-6400=10(m)
Câu 3:
Xét ΔCAB có \(\dfrac{CB}{sinA}=\dfrac{CA}{sinB}\)
=>\(\dfrac{260}{sin45}=\dfrac{CA}{sin30}\)
=>\(CA\simeq183,85\left(m\right)\)
Câu 4:
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)EB tại C
Xét ΔABE vuông tại A có AC là đường cao
nên \(BC\cdot BE=BA^2=\left(2R\right)^2=4R^2\)
b: Ta có: ΔOAD cân tại O
mà OE là đường cao
nên OE là phân giác của góc AOD
Xét ΔOAE và ΔODE có
OA=OD
\(\widehat{AOE}=\widehat{DOE}\)
OE chung
Do đó: ΔOAE=ΔODE
=>\(\widehat{OAE}=\widehat{ODE}=90^0\)
Xét tứ giác EAOD có
\(\widehat{EAO}+\widehat{EDO}=90^0+90^0=180^0\)
=>EAOD là tứ giác nội tiếp
=>E,A,O,D cùng thuộc một đường tròn
c: Xét (O) có
OD là bán kính
ED\(\perp\)DO tại D
Do đó: ED là tiếp tuyến của (O)
Xét (O) có
\(\widehat{EDC}\) là góc tạo bởi tiếp tuyến DE và dây cung DC
\(\widehat{CBD}\) là góc nội tiếp chắn cung DC
Do đó: \(\widehat{EDC}=\widehat{CBD}\)
=>\(\widehat{EDC}=\widehat{EBD}\)
Xét ΔEDC và ΔEBD có
\(\widehat{EDC}=\widehat{EBD}\)
\(\widehat{DEC}\) chung
Do đó: ΔEDC đồng dạng với ΔEBD
=>\(\widehat{ECD}=\widehat{EDB}\)
a: Gọi OK là khoảng cách từ O đến AB
Suy ra: OK\(\perp\)AB tại K
Xét \(\left(O\right)\) có
OK là một phần đường kính
AB là dây
OK\(\perp\)AB tại K
Do đó: K là trung điểm của AB
Suy ra: \(KA=KB=\dfrac{AB}{2}=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔOKA vuông tại K, ta được:
\(OA^2=OK^2+KA^2\)
\(\Leftrightarrow OK^2=13^2-12^2=25\)
hay OK=5cm