K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có: \(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\) \(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\) Nhân vế theo vế rồi khai phương ta được đpcm. b)...
Đọc tiếp

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có:

\(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\)

\(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\)

Nhân vế theo vế rồi khai phương ta được đpcm.

b) \(\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{4\sqrt{ab}}{a+b}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{7\sqrt{ab}}{a+b}\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2}{2ab}.\dfrac{4\sqrt{ab}}{a+b}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{7}{2}=3.2-\dfrac{7}{2}=\dfrac{5}{2}\)

Lưu ý: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\dfrac{\sqrt{ab}}{a+b}\le\dfrac{1}{2}\)

1.2) \(a^3-3a^2+8a=9\Leftrightarrow\left(a-1\right)^3+5a-8=0\)

\(b^3-6b^2+17b=15\Leftrightarrow\left(b-2\right)^3+5b-7=0\)

Cộng vế theo vế, áp dụng HĐT cho 2 cái mũ 3 rồi suy ra được a+b=3

1.1 Phương trình tương đương \(x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)

Chia cả 2 vế cho x, chuyển vế, rút gọn, ta được

\(\left(x-\dfrac{1}{x}\right)+\sqrt{x-\dfrac{1}{x}}-2=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\) thì ta có:

\(t^2+t-2=0\Rightarrow\)Chọn t=1 vì \(t\ge0\)

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\) giải ra kết luận được 2 nghiệm \(x_1=\dfrac{1+\sqrt{5}}{2};x_2=\dfrac{1-\sqrt{5}}{2}\)

Bài 2: Bó tay nha con ngoan^^

Mấy CTV đừng xóa, để người cần đọc đã ;V

1
2 tháng 12 2017

Unruly Kid Rr :))

2 tháng 12 2017

:))

Đề: Cho \(\left\{{}\begin{matrix}x,y,z0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\) => A...
Đọc tiếp

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko

Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)

=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Áp dụng BĐT Cauchy ta có

\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)

\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)

4
10 tháng 12 2017

@Unruly Kid

10 tháng 12 2017

Gọi thêm bác nào vào duyệt đi???

17 tháng 4 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

NV
17 tháng 4 2021

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)

21 tháng 5 2018

đặt x/y=a hay xy/z=a hay j đó là ra nói chung là 4 biế
n lười nháp

3 tháng 8 2017

Chời ạ quy đồng lên thôi mà bạn

20 tháng 2 2022

ai giúp em vs