K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

Giả sử tam giác ABC vuông tại A và đường cao AH chia tam giác thành 2 phần có diện tích là \(54cm^2\) và \(96cm^2\).

Giả sử \(S_{AHB}=54cm^2,S_{AHC}=96cm^2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}.AH.HB=54\\\dfrac{1}{2}.AH.HC=96\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH.HB=108\\AH.HC=192\end{matrix}\right.\)

\(\Rightarrow AH^2.HB.HC=20736\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AH^2.HB.HC=AH^2.AH^2=AH^4=20736\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{108}{12}=9\\HC=\dfrac{192}{12}=16\end{matrix}\right.\Rightarrow BC=HB+HC=9+16=25\left(cm\right)\)

 

9 tháng 9 2020

A C B H

có S AHB = AH.HB/2 = 54 (gt) => AH.HB = 108

S AHC = AH.HC/2 = 96 (gt) => AH.HC = 192

=> AH^2.HB.HC = 108.192 = 20736                                                                 (1)

tg ABC có ^A = 90 (gt) ; AH _|_ BC => AH^2 = HB.HC (đl)

=> AH^4 = AH^2.HB.HC    và (1)

=> AH^4 = 20736

=> AH = 12 do AH > 0

có AH.HB = 108 => HB = 9 

AH.HC = 192 => HC = 16

=> HB + HC = 9 + 16 = 25

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

Gọi độ dài hình chiếu thứ nhất là x

=>Độ dài hình chiếu thứ 2 là x+14

Theo đề, ta có: x^2+14x=24^2=576

=>x^2+14x-576=0

=>x=18

=>Độ dai cạnh huyền là 18+18+14=50cm

\(a=\sqrt{18\cdot50}=30\left(cm\right)\)

\(b=\sqrt{32\cdot50}=40\left(cm\right)\)

S=1/2*30*40=15*40=600cm2

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

NV
9 tháng 1 2023

Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0

\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)

Áp dụng hệ thức lượng trong tam giác vuông:

\(24^2=x\left(x+14\right)\)

\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)

Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)

9 tháng 8 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

ΔABC vuông tại A và đường cao AH như trên hình.

BC = BH + HC = 1 + 2 = 3

Theo định lí 1:

A B 2   =   B H . B C   =   1 . 3   =   3

=> AB = √3

Theo định lí 1:

A C 2   =   H C . B C   =   2 . 3   =   6

=> AC = √6

Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.