Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Để hàm số nghịch biến trên khoảng (0;2) thì
Mà m ∈ ℤ
⇒ m ∈ - 4 ; 0 ; 1 ; 2 ; 3 ; 4 : có 6 giá trị
Chọn: B
Để hàm số nghịch biến trên khoảng (0;2) thì
Mà m ∈ ℤ
⇒ m ∈ - 4 ; 0 ; 1 ; 2 ; 3 ; 4 : có 6 giá trị
Chọn: B
Chọn: B.
Ta có y ' = 2 x 5 + 2 m x 2 + m 2 x 2
Để hàm số đồng biến trên
Xét hàm số f x = - 2 x 5 2 x 2 + 1 trên 0 ; + ∞ , sử dụng MTCT ta có
Vậy không có giá trị nguyên âm của tham số m thỏa mãn yêu cầu bài toán.
Chọn C
Tập xác định : .
.
Hàm số đồng biến trên khoảng khi và chỉ khi .
.
.
Xét hàm số .
Ta có : .
.
Bảng biến thiên :
Từ bảng biến thiên ta thấy : .
Giá trị nguyên dương của tham số là , và .
\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)
\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)
\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)
Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)
\(\Rightarrow-m\le4\Rightarrow m\ge-4\)