K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2021

\(y'=3x^2+m+\dfrac{1}{x^6}\ge0\) ; \(\forall x>0\)

\(\Leftrightarrow3x^2+\dfrac{1}{x^6}\ge-m\)

\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)

Ta có: \(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{x^6}}=4\)

\(\Rightarrow-m\le4\Rightarrow m\ge-4\)

NV
5 tháng 8 2021

\(y'=3x^2+\dfrac{1}{x^6}+m\)

Hàm đồng biến trên \(\left(0;+\infty\right)\Leftrightarrow y'\ge0;\forall x>0\)

\(\Leftrightarrow3x^2+\dfrac{1}{x^6}+m\ge0\)

\(\Leftrightarrow-m\le3x^2+\dfrac{1}{x^6}\)

\(\Leftrightarrow-m\le\min\limits_{x>0}\left(3x^2+\dfrac{1}{x^6}\right)\)

Ta có:

\(3x^2+\dfrac{1}{x^6}=x^2+x^2+x^2+\dfrac{1}{x^6}\ge4\sqrt[4]{\dfrac{x^6}{6}}=4\)

\(\Rightarrow-m\le4\Rightarrow m\ge-4\)

\(\Rightarrow m=\left\{-4;-3;-2;-1\right\}\)

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

14 tháng 2 2019

Chọn: B.

Ta có  y ' = 2 x 5 + 2 m x 2 + m 2 x 2

Để hàm số đồng biến trên

Xét hàm số f x = - 2 x 5 2 x 2 + 1  trên 0 ; + ∞ , sử dụng MTCT ta có

Vậy không có giá trị nguyên âm của tham số m thỏa mãn yêu cầu bài toán.

30 tháng 12 2018

24 tháng 7 2023

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn

10 tháng 8 2018

+ Hàm số xác định và liên tục với mọi x> 0.

Ta có  y ' = 3 x 2 + m + 1 x 6 ,   ∀ x ∈ 0 ;   + ∞

+  Hàm số đồng biến trên khoảng (0; +∞)  khi và chỉ khi  y ' = 3 x 2 + m + 1 x 6 ≥ 0   với mọi x> 0.

⇔ m ≥ - 3 x 2 - 1 x 6 = g ( x ) ,   ∀ x ∈ ( 0 ; + ∞ ) ⇔ m ≥ m a x x ∈ ( 0 ; + ∞ ) g ( x ) . g ' ( x ) = - 6 x + 6 x 7 = - 6 x 8 + 6 x 7 = 0 ⇔ x = 1

Bảng biến thiên

Suy ra maxg( x) = g(1) = -4 và do đó để hàm số đã cho đồng biến t với x> 0 thì m≥ -4

 Mà m nguyên âm nên m ∈ - 4 ; - 3 ; - 2 ; - 1 .

Chọn A.

 

19 tháng 4 2016

Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)

\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3

Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]

9 tháng 12 2018