Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số nguyên đối nhau thì thỏa mãn đề bài, ví dụ: 2\( \vdots \)(-2)và (-2)\( \vdots \)2
\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)
\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).
Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)
Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} = - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)
Vậy \(a = - b\) và \(b = - a\). Hay a và b là hai số đối nhau và khác nhau.
Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.
a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.
Ta có: 84 = 22.3.7
180 = 22. 32.5
ƯCLN(84, 180) = 22. 3 = 12
=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Mà a > 6.
=> a = 12.
Vậy tập hợp A = {12}
b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300
Ta có: \(12 = 2^2. 3; 15 = 3.5; 18 = 2.3^2\)
\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)
=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}
Mà 0 < b < 300
=> b = 180
Vậy tập hợp B = {180}
Không. Vì nếu \(a⋮b\)thì \(b\le a\). Theo đề thì chúng không thể bằng nhau vì chúng là 2 số nguyên tố khác nhau, nếu \(b< a\)thì b không chia hết cho a.
\(\Rightarrow\)không có 2 số nguyên tố khác nhau mà a chia hết cho b và b chia hết cho a.
Bạn ơi cho mk hỏi đề bài có phải là:
Có hai số nguyên a và b khác nhau nào mà a\(⋮\)b và b\(⋮\)a không?
Trả lời nhanh thì mk làm nhanh cho
Chúc bn học tốt
Co! sao ban khong thu a la so duong, b la so am hoac a la so am, b la so duong
Số tự nhiên a nhỏ nhất khác 0 và a ⋮ 28 và a ⋮ 32
Do đó a = BCNN(28, 32)
28 = 22.7
32 = 25
Thừa số nguyên tố chung là 2, thừa số nguyên tố riêng là 7. Số mũ lớn nhất của 2 là 5, của 7 là 1
Nên a = BCNN(28, 32) = 25.7 = 224.
khi đó : nếu a chia hết cho b và b chia hết cho a thì a=b hoặc a=-b
thật vậy đó a chia hết cho b nên a= bq với q thuộc Z. Lại b chia hết cho a nên b=ap với q thuộc Z
suy ra a=bq=(ap)q tức là pq bằng 1 vì a khác 0.Vậy p=q=1 hoặcp=q=-1
có , vd: -1 chia hết cho 1 ; 1 chia hết cho -1
tóm lại , đó là 2 số nguyên đối nhau
có đó: ví dụ 1 và -1; 2 và -2; 3 và -3....
tick nha