Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Do đó hàm số f(x) đồng biến trên R. Với một hàm số f(x) đồng biến trên R ta có tính chất sau:
Thật vậy
+) Nếu
(vô lí);
+) Nếu
(vô lí).
+) Nếu
(thỏa mãn)/
Từ ba khả năng trên ta có điều phải chứng minh. Áp dụng tính chất này ta có:
Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi (*) có ba nghiệm thực phân biệt
Có tất cả 20 số nguyên thỏa mãn.
Chọn đáp án A.
Đặt t = 2 x t > 0 phương trình trở thành:
Vẽ trên cùng hệ trục toạ độ hai parabol
P 1 : y = x 2 + 1 ; ( P 2 ) : y = - x 2 + 4 x - 1 .
Với mỗi t > 0 cho ta một nghiệm x = log 2 t . Do đó phương trình có đúng 2 nghiệm thực phân biệt khi và chỉ khi hệ phương trình cuối có đúng 2 nghiệm dương phân biệt. Điều này tương đương với đường thẳng y = 2m cắt đồng thời (P1), (P2) tại đúng 2 điểm có hoành độ dương. Quan sát đồ thị suy ra các giá trị cần tìm của tham số là
Chọn đáp án A.