Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Điều kiện:mx2+1>0.
- Nếu m=0 thì hàm số trở thành y=x+1 không có tiệm cận ngang.
- Nếu m<0 thì hàm số xác định ⇔ - 1 - m < x < 1 - m
Do đó, lim x → ± ∞ y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.
- Nếu m>0 hì hàm số xác định với mọi x.
Suy ra đường thẳng y = 1 m là tiệm cận ngang của đồ thị hàm số khi x → + ∞ .
Suy ra đường thẳng y = - 1 m là tiệm cận ngang của đồ thị hàm số.
Vậy m>0 thỏa mãn yêu cầu đề bài.
Chọn B.
Điều kiện:
Ta thấy
⇒ đồ thị hàm số có đúng một TCĐcó đúng một nghiệm
TH1: Phương trình (*) có nghiệm kép
TH2: Phương trình (*) có 2 nghiệm phân biệt
Kết hợp các TH và điều kiện bài cho trước ta có: thỏa mãn điều kiện bài toán
Chọn D
Chú ý khi giải: Chú ý điều kiện
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)
Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang
Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang
Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)
- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
- Với \(m\ge0\)
\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)
+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng
Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử
Đáp án B
Với
có tiệm cận đứng
tiệm cận ngang
Diện tích hình chữ nhật bằng 8
ĐKXĐ: 0 ≤ x ≤ 4 x 2 - 6 x + 2 m > 0
Ta có
12
+
4
x
-
x
2
≠
0
∀
x
nên để ( C) có hai tiệm cận đứng thì phương trình
x
2
-
6
x
+
2
m
=
0
⇔
x
2
-
6
x
+
2
m
=
0
(
*
)
có hai nghiệm phân biệt thuộc [ 0; 4]
Đế phương trình có 2 nghiệm phân biệt thì ∆ ' = 9 - 2 m > 0 ⇔ m < 9 2
Gọi 2 nghiệm phân biệt của (*) là x1< x2 ta có 0≤ x1< x2≤ 4.
Theo định lí Vi-et ta có x 1 + x 2 = 6 x 1 x 2 = 2 m
Khi đó
Kết hợp nghiệm ta có 4 ≤ m ≤ 9 2
Mà m nguyên nên m= 4
Chọn B.
Điều kiện: mx2+ 1 > 0.
- Nếu m= 0 thì hàm số trở thành y= x+ 1 không có tiệm cận ngang.
- Nếu m< 0 thì hàm số xác định ⇔ - 1 - m < x < 1 - m
Do đó, lim x → ± ∞ y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.
- Nếu m> 0 thì hàm số xác định với mọi x.
Suy ra đường thẳng y = 1 m là tiệm cận ngang của đồ thị hàm số khi x → + ∞ .
Suy ra đường thẳng y = - 1 m là tiệm cận ngang của đồ thị hàm số khi x → - ∞
Vậy m> 0 thỏa mãn yêu cầu đề bài.
Chọn D.