K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

ĐKXĐ:  0 ≤ x ≤ 4 x 2 - 6 x + 2 m > 0

Ta có 12 + 4 x - x 2 ≠ 0   ∀ x  nên để ( C)  có hai tiệm cận đứng thì phương trình
  x 2 - 6 x + 2 m = 0 ⇔ x 2 - 6 x + 2 m = 0   ( * )
có hai nghiệm phân biệt thuộc [ 0; 4]

Đế phương trình có 2 nghiệm phân biệt thì  ∆ ' = 9 - 2 m > 0 ⇔ m < 9 2

Gọi 2 nghiệm phân biệt của (*) là x1< x2  ta có  0≤ x1< x2≤ 4.

 Theo định lí Vi-et ta có  x 1 + x 2 = 6 x 1 x 2 = 2 m

Khi đó

Kết hợp nghiệm ta có  4 ≤ m ≤ 9 2

Mà m nguyên nên m= 4

Chọn B.

29 tháng 3 2019

11 tháng 9 2019

11 tháng 4 2018

Suy ra đồ thị hàm số có 1 đường TCN y = 0.

Do đó đồ thị hàm số có đúng  2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2   -   2 x   +   4   =   0  có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn A

NV
22 tháng 3 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)

Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang

Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang

Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)

- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)

- Với \(m\ge0\)

\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)

+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)

+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử

30 tháng 8 2019

+ Phương trình đường thẳng d  đi qua A và có hệ số góc k là: y= k( x-a) +1

+ Phương trình hoành độ giao điểm của d và (C) :

+ Với k= 0, ta có d: y= 1  là tiệm cận ngang đồ thị hàm số nên không thể tiếp xúc được.

Với k≠0 , d và (C)  tiếp xúc nhau khi và chỉ khi (1)  có nghiệm kép

Coi đây là phương trình bậc 2 ẩn k  tham số a

+ Để qua A( a; 1)  vẽ được đúng  tiếp tuyến thì phương trình  có đúng một nghiệm k≠ 0.

*Xét 1-a= 0 hay a=1, ta có  4k+ k= 0 hạy k= -1 thỏa.

*Có f(0) = 4≠0 nên loại đi trường hợp có hai nghiệm trong đó có một nghiệm là .

*Còn lại là trường hợp ∆x= 0 có nghiệm kép khi

Vậy có 2 giá trị của a thỏa mãn đầu bài là a= 1 hoặc a= 3/2.

Chọn A.

14 tháng 12 2019

17 tháng 11 2019

Đáp án B(Cm) có hai đường tiệm cận đứng có hai nghiệm phân biệt khác 1

4 tháng 7 2018

Chọn D

Đồ thị hàm số có đúng hai tiệm cận đứng

  có 2 nghiệm phân biệt khác 1.