K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
10 GP
1. Xét hai tam giác \(PNA\)và \(MNC\):
\(\widehat{PNA}=\widehat{MNC}\)(hai góc đối đỉnh)
\(AN=NC\)
\(\widehat{NCM}=\widehat{NAP}\)(hai góc so le trong)
Suy ra \(\Delta PNA=\Delta MNC\left(g.c.g\right)\)
2. Xét tứ giác \(APCM\)có: \(AP//MC,AP=CM\)
do đó \(APCM\)là hình bình hành.
Suy ra \(PC=AM\).
Xét tam giác \(ABC\)có \(AB=AC\)nên tam giác \(ABC\)cân tại \(A\)
do đó trung tuyến \(AM\)đồng thời là đường cao của tam giác \(ABC\)
\(\Rightarrow AM\perp BC\)
\(APCM\)là hình bình hành nên \(PC//AM\)
suy ra \(PC\perp BC\).
3. Xét tam giác \(AIP\)và tam giác \(MIB\):
\(\widehat{API}=\widehat{MBI}\)(hai góc so le trong)
\(BM=AP\left(=MC\right)\)
\(\widehat{PAI}=\widehat{BMI}\left(=90^o\right)\)
suy ra \(\Delta AIP=\Delta MIB\left(g.c.g\right)\)
4. \(\Delta AIP=\Delta MIB\Rightarrow AI=MI\)
suy ra \(I\)là trung điểm của \(AM\).
Xét tam giác \(AMC\):
\(I,N\)lần lượt là trung điểm của \(AM,AC\)nên \(IN\)là đường trung bình của tam giác \(AMC\)
suy ra \(IN//BC\).