Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^{10}=t\)
Ta có: \(x^{50}+x^{10}+1=t^5+t+1\) \(x^{20}+x^{10}+1=t^2+t+1\)
\(A=t^5+t+1=t^5-t^2+t^2+t+1=t^2\left(t^3-1\right)+t^2+t+1\)
\(A=t^2\left(t-1\right)\left(t^2+t+1\right)+t^2+t+1\)
\(A=\left(t^2+t+1\right)\left[t^2\left(t-1\right)+1\right]\)
\(A=\left(t^2+t+1\right)\left(t^3-t^2+1\right)\)
Vậy A chia hết cho \(t^2+t+1\)
-> đpcm
Chúc bạn buổi tối vui vẻ
ko bt bn giải ra chưa nx nhưng mk giả thử nhé!
bn sửa lại đề: \(x^{50}+x^{20}+1⋮x^{20}+x^{10}+1\)
\(x^{50}+x^{20}+1=x^{50}-x^{20}+x^{20}+x^{10}+1\)\(=x^{20}\left(x^{30}-1\right)+x^{20}+x^{10}+1\)
\(=x^{20}[\left(x^{10}\right)^3-1]+x^{20}+x^{10}+1\)
\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+x^{20}+x^{10}+1\)\(=\left(x^{20}+x^{10}+1\right)[x^{20}\left(x^{10}-1\right)+1]\)
Từ đó suy ra đpcm
à quên, cách lm thì đúng r nhưng đề mk sửa lại sai nhé
đúng là \(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1=x^{20}\left(x^{30}-1\right)+\left(x^{20}+x^{10}+1\right)\)
\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+\left(x^{20}+x^{10}+1\right)\)
\(=\left(x^{20}+x^{10}+1\right)\left(x^{30}-x^{20}+1\right)⋮\left(x^{20}+x^{10}+1\right)\forall x\)
Ta có: \(x^{50}-x^{20}=x^{20}\left(x^{30}-1\right)=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)
\(\Rightarrow x^{50}-x^{20}⋮x^{20}+x^{10}+1\)
\(\Rightarrow x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)
Đặng Khánh Duy Mk dùng HĐT.
\(x^{30}-1=\left(x^{10}\right)^3-1=\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)
a/ Đặt \(x^{10}=a\) ta có:
\(A=a^{197}+a^{193}+a^{198}\)
\(=a^{193}\left(a^4+1+a^5\right)\)
\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)
\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)
Vậy có ĐPCM
b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)
\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)
Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)
\(\Rightarrow r\) là số dư
Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)
\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)
Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)
thừa nhận (1)&(2) "cần c/m"=> giải thích ở một câu khác
\(x^2+y^2+z^2\ge xy+yz+xz\)(1)
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)(2)
\(\left\{{}\begin{matrix}x+y+z\ge0\\x^2+y^2+z^2-\left(xy+xz+yz\right)\ge0\end{matrix}\right.\)
\(\Rightarrow VP\left(2\right)\ge0\Rightarrow VT\ge0\Rightarrow x^3+y^3+z^3\ge3xyz\Rightarrow dpcm\Leftrightarrow dccm\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Biến đổi \(x^{50}+x^{20}+x^{10}\) ra tích có chứa thừa số \(x^{20}+x^{10}+1\) bạn nhé