K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111 

= 0

18 tháng 4 2016

Biến đổi  \(x^{50}+x^{20}+x^{10}\) ra tích có chứa thừa số  \(x^{20}+x^{10}+1\)  bạn nhé 

7 tháng 9 2018

Đặt \(x^{10}=t\)
Ta có: \(x^{50}+x^{10}+1=t^5+t+1\)            \(x^{20}+x^{10}+1=t^2+t+1\)

\(A=t^5+t+1=t^5-t^2+t^2+t+1=t^2\left(t^3-1\right)+t^2+t+1\)

\(A=t^2\left(t-1\right)\left(t^2+t+1\right)+t^2+t+1\)

\(A=\left(t^2+t+1\right)\left[t^2\left(t-1\right)+1\right]\)

\(A=\left(t^2+t+1\right)\left(t^3-t^2+1\right)\)
Vậy A chia hết cho \(t^2+t+1\)
-> đpcm
Chúc bạn buổi tối vui vẻ

10 tháng 8 2017

ko bt bn giải ra chưa nx nhưng mk giả thử nhé!

bn sửa lại đề: \(x^{50}+x^{20}+1⋮x^{20}+x^{10}+1\)

\(x^{50}+x^{20}+1=x^{50}-x^{20}+x^{20}+x^{10}+1\)\(=x^{20}\left(x^{30}-1\right)+x^{20}+x^{10}+1\)

\(=x^{20}[\left(x^{10}\right)^3-1]+x^{20}+x^{10}+1\)

\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+x^{20}+x^{10}+1\)\(=\left(x^{20}+x^{10}+1\right)[x^{20}\left(x^{10}-1\right)+1]\)

Từ đó suy ra đpcm

11 tháng 8 2017

à quên, cách lm thì đúng r nhưng đề mk sửa lại sai nhé

đúng là \(x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)

31 tháng 10 2020

\(x^{50}+x^{10}+1=x^{20}\left(x^{30}-1\right)+\left(x^{20}+x^{10}+1\right)\)

\(=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)+\left(x^{20}+x^{10}+1\right)\)

\(=\left(x^{20}+x^{10}+1\right)\left(x^{30}-x^{20}+1\right)⋮\left(x^{20}+x^{10}+1\right)\forall x\)

30 tháng 10 2020

Ta có: \(x^{50}-x^{20}=x^{20}\left(x^{30}-1\right)=x^{20}\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)

\(\Rightarrow x^{50}-x^{20}⋮x^{20}+x^{10}+1\)

\(\Rightarrow x^{50}+x^{10}+1⋮x^{20}+x^{10}+1\)

31 tháng 10 2020

Đặng Khánh Duy Mk dùng HĐT.

\(x^{30}-1=\left(x^{10}\right)^3-1=\left(x^{10}-1\right)\left(x^{20}+x^{10}+1\right)\)

4 tháng 12 2017

a/ Đặt \(x^{10}=a\) ta có:

\(A=a^{197}+a^{193}+a^{198}\)

\(=a^{193}\left(a^4+1+a^5\right)\)

\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)

\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)

Vậy có ĐPCM

4 tháng 12 2017

b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)

\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)

28 tháng 10 2017

Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)

\(\Rightarrow r\) là số dư

Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)

\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)

Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)

28 tháng 10 2017

bài 2

 f(x) = (x²+x-1)^10 + (x²-x+1)^10 -2 
f(1) = 1 + 1 - 2 = 0

=> x = 1 là nghiệm cua f(x)

=> f(x) chia hết cho x-1 

9 tháng 4 2017

thừa nhận (1)&(2) "cần c/m"=> giải thích ở một câu khác

\(x^2+y^2+z^2\ge xy+yz+xz\)(1)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)(2)

\(\left\{{}\begin{matrix}x+y+z\ge0\\x^2+y^2+z^2-\left(xy+xz+yz\right)\ge0\end{matrix}\right.\)

\(\Rightarrow VP\left(2\right)\ge0\Rightarrow VT\ge0\Rightarrow x^3+y^3+z^3\ge3xyz\Rightarrow dpcm\Leftrightarrow dccm\)