Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2+4+6+..+2n=\frac{\left(2n+2\right)n}{2}=\frac{2.\left(n+1\right)n}{2}=n\left(n+1\right)\)
Không thể là số chính phương vì : n luôn khác n +1
n & n+1 không thể cùng là số chính phương với n khác 0 => tích chúng không thể là số chính phương
A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n (n chữ số 9)
= 9(1111...111 +2n)chia hết cho 9 (n chữ số 1)
Đặt B = 111...111+2n = 111...111 - n +3n
Tổng các chữ số của 111...111 là n
=> B=111...111 - n +3n chia hết cho 3
=> A chia hết cho 3
Vì (3,9)=1 => A chia hết cho 27
b) n(n+3)
đặt n(n+3)=a2
~> n2+3n=a2
<-> 4n2+12n=4a2
<-> 4n2+12n+9−9=4a2
<-> (2n+3+2a)(2n+3−2a)=9
ta thấy 2n + 3 + 2a > 2n + 3 - 2a
vì chúng là là số nguyên dương nên có thể viết
(2n+3+2a)(2n+3−2a)=9.1
<-> {2n+3+2a=92n+3−2a=1
{a=2n=1
C) 13n + 3
đặt 13n+3=y2
~> 13(n−1)=y2−16
<-> 13(n−1)=(y+4)(y−4)
~> (y+4)(y−1)⋮13 mà 13 là số nguyên tố nên y−4⋮13 hoặc y+4⋮13
~> y=13k±−4 ( k thuộc N)
~> 13(n−1)=(13k±−4)2−16=13k(13k±−8)
~> n=13k2±8k+1
, vậy n = ... thì ..
d) n2+n+1589
đặt n2+n+1589=m2
~> (4n2+1)2+6355=4m2
<-> (2m+2n+1)(2m−2n−1)=6355
thấy 2m + 2n + 1 > 2m - 2n - 1 > 0
vì chúng là những số lẻ nên ta viết đc :
(2m + 2n + 1)(2m -2n - 1) = 6355.1 = 1271.5 = 205.31 = 155.414
~> n nhận các giá trị 1588,316,43,28
__________________
a)Đặt
Do n và a là số tự nhiên nên xét ước -11 rồi tìm ra n và a, sau đó kết luận n=.... tự tính nhé
Ta có:
1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).
Vì n2+2n+12 là SC nên ta có \(n^2+2n+12=m^2\) (m là số tự nhiên)
\(=>\left(n^2+2n+1\right)+11=m^2=>\left(n+1\right)^2+11=m^2\)
\(=>m^2-\left(n+1\right)^2=11=>\left[m-\left(n+1\right)\right].\left[m+\left(n+1\right)\right]=11\)
\(=>\left(m-n-1\right).\left(m+n+1\right)=11=1.11=11.1\)
vì m,n là các số tự nhiên nên \(m-n-1< m+n+1\)
=>\(\left(m-n-1\right).\left(m+n+1\right)=1.11\)
=> \(\hept{\begin{cases}m-n-1=1\\m+n+1=11\end{cases}=>\hept{\begin{cases}m-n=2\\m+n=10\end{cases}}}\)
Cộng vế với vế:
\(\left(m-n\right)+\left(m+n\right)=2+10=12=>2m=12=>m=6\)
Từ đó suy ra n=4
Vậy n=4 thì n2+2n+12 là SCP
Đặt \(n^2+2n+12=a^2\Leftrightarrow\left(n+1\right)^{^2}+11=a^2\Leftrightarrow\left(n-a+1\right)\left(n+a+1\right)=-11\)
Do n và s là số tự nhien nên xét ước 11 rồi tìm n và a sau , sau đó kết luan n = 4
Tổng của chúng là:n/2 x (2n-1)+1=n/2 x 2n=n.n=n2
Vậy tổng của chúng là số chính phương.