K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2

TH1: p = 3k+1

\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)

\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)

-> a chia hết cho 3

TH2: p = 3k+2

\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)

\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)

-> a chia hết cho 3

Vậy a là hợp số

14 tháng 10 2019

bn oi nhầm rồi

\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)

1 tháng 8 2019

#)Giải :

Giả sử  \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp 

\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)

Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)

Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)

\(\Rightarrowđpcm\)

3 tháng 8 2019

cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

21 tháng 10 2020

C=9n^3

DD
17 tháng 5 2021

\(A=19.2^{3n}+17=19.8^n+17\)

Với \(n=2k\)

\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)

mà \(A>3\)nên \(A\)là hợp số. 

Với \(n=4k+1\)

\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)

mà \(A>13\)nên \(A\)là hợp số. 

Với \(n=4k+3\)

\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)

mà \(A>5\)nên \(A\)là hợp số. 

7 tháng 8 2016

B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2

B=3k+1 thì A =3n+6027k+2010 chia hét cho 3

B=3k+2 thì A=

27 tháng 10 2016

Vì \(b\in P;b\ne3\)

\(\Rightarrow\orbr{\begin{cases}b\text{≡}2\left(mod3\right)\\b\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}b^2\text{≡}4\text{≡}1\left(mod3\right)\\b^2\text{≡}1^2\text{≡}1\left(mod3\right)\end{cases}}\)

\(\Rightarrow b^2\text{≡}1\left(mod3\right)\)

\(\Rightarrow1993b^2\text{≡}1993\text{≡}1\left(mod3\right)\)

Lại có \(3x\text{≡}0\left(mod3\right)\)

\(2\text{≡}2\left(mod3\right)\)

\(\Rightarrow A=3x+2+1993b^2\text{≡}0+2+1\text{≡}3\text{≡}0\left(mod3\right)\)

\(x\in N;b>1\Rightarrow A>0+2+1993.2^2>3\)

\(\Rightarrow\)A là hợp số

Vậy ...

28 tháng 10 2016

b nguyên tố khác 3

áp dụng t/c "bình phương số lẻ luôn có dạng 3k+1" ta có:

nếu b =2 số chắn duy nhất A=3x+2+1993.4 chia hết cho 3

b^2=3k+1 

A=3x+2+1993(3k+1)=3x+1993.3k+3 luôn chia hết cho 3 với mọi x tự nhiên => dpcm

1 tháng 2 2021

\(d=\left(2n+1,\frac{n^2+n}{2}\right)=\left(2n+1,n^2+n\right)\text{vì }2n+1\text{ lẻ}\)

\(\Rightarrow2n^2+2n-2n^2-n\text{ chia hết cho d hay:}n\text{ chia hết cho d do đó: }2n+1-2n\text{ chia hết cho d }nên:\)

1 chia hết cho d nên: d=1.

ta có điều phải chứng minh.