K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)

=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)

= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)

n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9

9n(n+10 chia hết cho 9

=> A chia hết cho 9

1 tháng 5 2020

Xét hằng đẳng thức sau đây: x+ y+ z- 3xyz

<=> ( x + y )- 3xy( x + y ) + z- 3xyz

<=> [ ( x + y )+ z3  ] - 3x2y - 3xy- 3xyz

<=> ( x + y + z )[ ( x + y )- ( x + y )z + z2 ] - 3xy ( x + y + z ) 

<=> ( x + y + z )( x2 + 2xy + y- zx - zy + z) - 3xy ( x + y + z ) 

<=> ( x + y + z )( x2 + y- xy - zx - zy + z

<=> x+ y+ z3 = ( x + y + z )( x2 + y- xy - zx - zy + z)  + 3xyz

Áp dụng hằng đẳng thức trên, ta có:

( n + n+ 1 + n + 2 )[  n2 + (n + 1 )- n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )

<=> ( 3n + 3 )( n2 + n + 2n + 1 - n- n - n2 - 2n - n- 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )

<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )

<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )

Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6

=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9

=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9

=> n3 + ( n + 1 )3 + ( n + 2 )chia hết cho 9 ( đpcm )

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2

7 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

kết quả 

lên mạng

24 tháng 12 2018

\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)

\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)

\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)

\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)

\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)

\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)

Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3

=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)

=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)

5 tháng 7 2016

xem lại câu a nhé bạn

18 tháng 2 2018

Đồng dư thôi

25 tháng 4 2018

Bài 3: mk làm theo cách này: từ A = 8k(k2+503)

Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)

\(=k\left(k^2-1+6\right)+6.83k\)

\(=k\left(k^2-1\right)+6k+6.83k\)

\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)

\(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6

Vậy A \(⋮\) 8.6=48

25 tháng 4 2018

í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)