K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

ta có 343=7^3

vì 9n^3 không chia hết cho 7

vì 9n^2 không chia hết cho 7

vì 3n  không chia hết cho 7

vì 16  không chia hết cho 7

=> 9n^3+9n^2+3n-16 không chia hết cho 343

29 tháng 9 2017

ta có: (3n + 4)2 -16

= (3n + 4)2 - 42

= (3n + 4 - 4)(3n + 4 + 4)

= 3n(3n + 8)

vì 3\(⋮\) 3 => 3n(3n + 8)\(⋮\) 3

hay (3n + 4)2 -16 \(⋮\) 3

27 tháng 9 2018

óc chó mới ko bik làm bài này

28 tháng 9 2017

=(3n + 4)\(^2\)- 4\(^2\)

=(3n +4 -4)( 3n +4+4)

=3n( 3n +8) \(\Rightarrow\) (3n + 4)\(^2\)- 4\(^2\)\(⋮\) 3 \(\forall\) n

7 tháng 10 2018

Ta có: (3n + 4)2 - 16

= (3n + 4)2 - 42

= (3n + 4 - 4)(3n + 4 + 4)

= 3n(3n + 8) ⋮ 3

Vậy (3n + 4)2 - 16 ⋮ 3 với mọi số nguyên n

2 tháng 10 2023

Ta có:

\(n^2+3n+11\) 

\(=n^2+3n+18-7\)

\(=\left(n+2\right)\left(n+9\right)-7\)

Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7

Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7

Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49 

Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\) 

 

đồ ngu, người ta nói chứng minh mà 5 ở đâu đây

30 tháng 10 2016

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn